1 | /* CTF format description.
|
---|
2 | Copyright (C) 2019-2021 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of libctf.
|
---|
5 |
|
---|
6 | libctf is free software; you can redistribute it and/or modify it under
|
---|
7 | the terms of the GNU General Public License as published by the Free
|
---|
8 | Software Foundation; either version 3, or (at your option) any later
|
---|
9 | version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful, but
|
---|
12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
---|
14 | See the GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program; see the file COPYING. If not see
|
---|
18 | <http://www.gnu.org/licenses/>. */
|
---|
19 |
|
---|
20 | #ifndef _CTF_H
|
---|
21 | #define _CTF_H
|
---|
22 |
|
---|
23 | #include <sys/types.h>
|
---|
24 | #include <limits.h>
|
---|
25 | #include <stdint.h>
|
---|
26 |
|
---|
27 |
|
---|
28 | #ifdef __cplusplus
|
---|
29 | extern "C"
|
---|
30 | {
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | /* CTF - Compact ANSI-C Type Format
|
---|
34 |
|
---|
35 | This file format can be used to compactly represent the information needed
|
---|
36 | by a debugger to interpret the ANSI-C types used by a given program.
|
---|
37 | Traditionally, this kind of information is generated by the compiler when
|
---|
38 | invoked with the -g flag and is stored in "stabs" strings or in the more
|
---|
39 | modern DWARF format. CTF provides a representation of only the information
|
---|
40 | that is relevant to debugging a complex, optimized C program such as the
|
---|
41 | operating system kernel in a form that is significantly more compact than
|
---|
42 | the equivalent stabs or DWARF representation. The format is data-model
|
---|
43 | independent, so consumers do not need different code depending on whether
|
---|
44 | they are 32-bit or 64-bit programs; libctf automatically compensates for
|
---|
45 | endianness variations. CTF assumes that a standard ELF symbol table is
|
---|
46 | available for use in the debugger, and uses the structure and data of the
|
---|
47 | symbol table to avoid storing redundant information. The CTF data may be
|
---|
48 | compressed on disk or in memory, indicated by a bit in the header. CTF may
|
---|
49 | be interpreted in a raw disk file, or it may be stored in an ELF section,
|
---|
50 | typically named .ctf. Data structures are aligned so that a raw CTF file or
|
---|
51 | CTF ELF section may be manipulated using mmap(2).
|
---|
52 |
|
---|
53 | The CTF file or section itself has the following structure:
|
---|
54 |
|
---|
55 | +--------+--------+---------+----------+--------+----------+...
|
---|
56 | | file | type | data | function | object | function |...
|
---|
57 | | header | labels | objects | info | index | index |...
|
---|
58 | +--------+--------+---------+----------+--------+----------+...
|
---|
59 |
|
---|
60 | ...+----------+-------+--------+
|
---|
61 | ...| variable | data | string |
|
---|
62 | ...| info | types | table |
|
---|
63 | +----------+-------+--------+
|
---|
64 |
|
---|
65 | The file header stores a magic number and version information, encoding
|
---|
66 | flags, and the byte offset of each of the sections relative to the end of the
|
---|
67 | header itself. If the CTF data has been uniquified against another set of
|
---|
68 | CTF data, a reference to that data also appears in the the header. This
|
---|
69 | reference is the name of the label corresponding to the types uniquified
|
---|
70 | against.
|
---|
71 |
|
---|
72 | Following the header is a list of labels, used to group the types included in
|
---|
73 | the data types section. Each label is accompanied by a type ID i. A given
|
---|
74 | label refers to the group of types whose IDs are in the range [0, i].
|
---|
75 |
|
---|
76 | Data object and function records (collectively, "symtypetabs") are stored in
|
---|
77 | the same order as they appear in the corresponding symbol table, except that
|
---|
78 | symbols marked SHN_UNDEF are not stored and symbols that have no type data
|
---|
79 | are padded out with zeroes. For each entry in these tables, the type ID (a
|
---|
80 | small integer) is recorded. (Functions get CTF_K_FUNCTION types, just like
|
---|
81 | data objects that are function pointers.)
|
---|
82 |
|
---|
83 | For situations in which the order of the symbols in the symtab is not known,
|
---|
84 | or most symbols have no type in this dict and most entries would be
|
---|
85 | zero-pads, a pair of optional indexes follow the data object and function
|
---|
86 | info sections: each of these is an array of strtab indexes, mapped 1:1 to the
|
---|
87 | corresponding data object / function info section, giving each entry in those
|
---|
88 | sections a name so that the linker can correlate them with final symtab
|
---|
89 | entries and reorder them accordingly (dropping the indexes in the process).
|
---|
90 |
|
---|
91 | Variable records (as distinct from data objects) provide a modicum of support
|
---|
92 | for non-ELF systems, mapping a variable name to a CTF type ID. The variable
|
---|
93 | names are sorted into ASCIIbetical order, permitting binary searching. We do
|
---|
94 | not define how the consumer maps these variable names to addresses or
|
---|
95 | anything else, or indeed what these names represent: they might be names
|
---|
96 | looked up at runtime via dlsym() or names extracted at runtime by a debugger
|
---|
97 | or anything else the consumer likes. Variable records with identically-
|
---|
98 | named entries in the data object section are removed.
|
---|
99 |
|
---|
100 | The data types section is a list of variable size records that represent each
|
---|
101 | type, in order by their ID. The types themselves form a directed graph,
|
---|
102 | where each node may contain one or more outgoing edges to other type nodes,
|
---|
103 | denoted by their ID. Most type nodes are standalone or point backwards to
|
---|
104 | earlier nodes, but this is not required: nodes can point to later nodes,
|
---|
105 | particularly structure and union members.
|
---|
106 |
|
---|
107 | Strings are recorded as a string table ID (0 or 1) and a byte offset into the
|
---|
108 | string table. String table 0 is the internal CTF string table. String table
|
---|
109 | 1 is the external string table, which is the string table associated with the
|
---|
110 | ELF dynamic symbol table for this object. CTF does not record any strings
|
---|
111 | that are already in the symbol table, and the CTF string table does not
|
---|
112 | contain any duplicated strings.
|
---|
113 |
|
---|
114 | If the CTF data has been merged with another parent CTF object, some outgoing
|
---|
115 | edges may refer to type nodes that exist in another CTF object. The debugger
|
---|
116 | and libctf library are responsible for connecting the appropriate objects
|
---|
117 | together so that the full set of types can be explored and manipulated.
|
---|
118 |
|
---|
119 | This connection is done purely using the ctf_import() function. The
|
---|
120 | ctf_archive machinery (and thus ctf_open et al) automatically imports archive
|
---|
121 | members named ".ctf" into child dicts if available in the same archive, to
|
---|
122 | match the relationship set up by the linker, but callers can call ctf_import
|
---|
123 | themselves as well if need be, if they know a different relationship is in
|
---|
124 | force. */
|
---|
125 |
|
---|
126 | #define CTF_MAX_TYPE 0xfffffffe /* Max type identifier value. */
|
---|
127 | #define CTF_MAX_PTYPE 0x7fffffff /* Max parent type identifier value. */
|
---|
128 | #define CTF_MAX_NAME 0x7fffffff /* Max offset into a string table. */
|
---|
129 | #define CTF_MAX_VLEN 0xffffff /* Max struct, union, enum members or args. */
|
---|
130 |
|
---|
131 | /* See ctf_type_t */
|
---|
132 | #define CTF_MAX_SIZE 0xfffffffe /* Max size of a v2 type in bytes. */
|
---|
133 | #define CTF_LSIZE_SENT 0xffffffff /* Sentinel for v2 ctt_size. */
|
---|
134 |
|
---|
135 | # define CTF_MAX_TYPE_V1 0xffff /* Max type identifier value. */
|
---|
136 | # define CTF_MAX_PTYPE_V1 0x7fff /* Max parent type identifier value. */
|
---|
137 | # define CTF_MAX_VLEN_V1 0x3ff /* Max struct, union, enums or args. */
|
---|
138 | # define CTF_MAX_SIZE_V1 0xfffe /* Max size of a type in bytes. */
|
---|
139 | # define CTF_LSIZE_SENT_V1 0xffff /* Sentinel for v1 ctt_size. */
|
---|
140 |
|
---|
141 | /* Start of actual data structure definitions.
|
---|
142 |
|
---|
143 | Every field in these structures must have corresponding code in the
|
---|
144 | endianness-swapping machinery in libctf/ctf-open.c. */
|
---|
145 |
|
---|
146 | typedef struct ctf_preamble
|
---|
147 | {
|
---|
148 | unsigned short ctp_magic; /* Magic number (CTF_MAGIC). */
|
---|
149 | unsigned char ctp_version; /* Data format version number (CTF_VERSION). */
|
---|
150 | unsigned char ctp_flags; /* Flags (see below). */
|
---|
151 | } ctf_preamble_t;
|
---|
152 |
|
---|
153 | typedef struct ctf_header_v2
|
---|
154 | {
|
---|
155 | ctf_preamble_t cth_preamble;
|
---|
156 | uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */
|
---|
157 | uint32_t cth_parname; /* Ref to basename of parent. */
|
---|
158 | uint32_t cth_lbloff; /* Offset of label section. */
|
---|
159 | uint32_t cth_objtoff; /* Offset of object section. */
|
---|
160 | uint32_t cth_funcoff; /* Offset of function section. */
|
---|
161 | uint32_t cth_varoff; /* Offset of variable section. */
|
---|
162 | uint32_t cth_typeoff; /* Offset of type section. */
|
---|
163 | uint32_t cth_stroff; /* Offset of string section. */
|
---|
164 | uint32_t cth_strlen; /* Length of string section in bytes. */
|
---|
165 | } ctf_header_v2_t;
|
---|
166 |
|
---|
167 | typedef struct ctf_header
|
---|
168 | {
|
---|
169 | ctf_preamble_t cth_preamble;
|
---|
170 | uint32_t cth_parlabel; /* Ref to name of parent lbl uniq'd against. */
|
---|
171 | uint32_t cth_parname; /* Ref to basename of parent. */
|
---|
172 | uint32_t cth_cuname; /* Ref to CU name (may be 0). */
|
---|
173 | uint32_t cth_lbloff; /* Offset of label section. */
|
---|
174 | uint32_t cth_objtoff; /* Offset of object section. */
|
---|
175 | uint32_t cth_funcoff; /* Offset of function section. */
|
---|
176 | uint32_t cth_objtidxoff; /* Offset of object index section. */
|
---|
177 | uint32_t cth_funcidxoff; /* Offset of function index section. */
|
---|
178 | uint32_t cth_varoff; /* Offset of variable section. */
|
---|
179 | uint32_t cth_typeoff; /* Offset of type section. */
|
---|
180 | uint32_t cth_stroff; /* Offset of string section. */
|
---|
181 | uint32_t cth_strlen; /* Length of string section in bytes. */
|
---|
182 | } ctf_header_t;
|
---|
183 |
|
---|
184 | #define cth_magic cth_preamble.ctp_magic
|
---|
185 | #define cth_version cth_preamble.ctp_version
|
---|
186 | #define cth_flags cth_preamble.ctp_flags
|
---|
187 |
|
---|
188 | #define CTF_MAGIC 0xdff2 /* Magic number identifying header. */
|
---|
189 |
|
---|
190 | /* Data format version number. */
|
---|
191 |
|
---|
192 | /* v1 upgraded to a later version is not quite the same as the native form,
|
---|
193 | because the boundary between parent and child types is different but not
|
---|
194 | recorded anywhere, and you can write it out again via ctf_compress_write(),
|
---|
195 | so we must track whether the thing was originally v1 or not. If we were
|
---|
196 | writing the header from scratch, we would add a *pair* of version number
|
---|
197 | fields to allow for this, but this will do for now. (A flag will not do,
|
---|
198 | because we need to encode both the version we came from and the version we
|
---|
199 | went to, not just "we were upgraded".) */
|
---|
200 |
|
---|
201 | # define CTF_VERSION_1 1
|
---|
202 | # define CTF_VERSION_1_UPGRADED_3 2
|
---|
203 | # define CTF_VERSION_2 3
|
---|
204 |
|
---|
205 | #define CTF_VERSION_3 4
|
---|
206 | #define CTF_VERSION CTF_VERSION_3 /* Current version. */
|
---|
207 |
|
---|
208 | /* All of these flags bar CTF_F_COMPRESS and CTF_F_IDXSORTED are bug-workaround
|
---|
209 | flags and are valid only in format v3: in v2 and below they cannot occur and
|
---|
210 | in v4 and later, they will be recycled for other purposes. */
|
---|
211 |
|
---|
212 | #define CTF_F_COMPRESS 0x1 /* Data buffer is compressed by libctf. */
|
---|
213 | #define CTF_F_NEWFUNCINFO 0x2 /* New v3 func info section format. */
|
---|
214 | #define CTF_F_IDXSORTED 0x4 /* Index sections already sorted. */
|
---|
215 | #define CTF_F_DYNSTR 0x8 /* Strings come from .dynstr. */
|
---|
216 | #define CTF_F_MAX (CTF_F_COMPRESS | CTF_F_NEWFUNCINFO | CTF_F_IDXSORTED \
|
---|
217 | | CTF_F_DYNSTR)
|
---|
218 |
|
---|
219 | typedef struct ctf_lblent
|
---|
220 | {
|
---|
221 | uint32_t ctl_label; /* Ref to name of label. */
|
---|
222 | uint32_t ctl_type; /* Last type associated with this label. */
|
---|
223 | } ctf_lblent_t;
|
---|
224 |
|
---|
225 | typedef struct ctf_varent
|
---|
226 | {
|
---|
227 | uint32_t ctv_name; /* Reference to name in string table. */
|
---|
228 | uint32_t ctv_type; /* Index of type of this variable. */
|
---|
229 | } ctf_varent_t;
|
---|
230 |
|
---|
231 | /* In format v2, type sizes, measured in bytes, come in two flavours. Nearly
|
---|
232 | all of them fit into a (UINT_MAX - 1), and thus can be stored in the ctt_size
|
---|
233 | member of a ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE.
|
---|
234 | Types larger than this must be stored in the ctf_lsize member of a
|
---|
235 | ctf_type_t. Use of this member is indicated by the presence of
|
---|
236 | CTF_LSIZE_SENT in ctt_size. */
|
---|
237 |
|
---|
238 | /* In v1, the same applies, only the limit is (USHRT_MAX - 1) and
|
---|
239 | CTF_MAX_SIZE_V1, and CTF_LSIZE_SENT_V1 is the sentinel. */
|
---|
240 |
|
---|
241 | typedef struct ctf_stype_v1
|
---|
242 | {
|
---|
243 | uint32_t ctt_name; /* Reference to name in string table. */
|
---|
244 | unsigned short ctt_info; /* Encoded kind, variant length (see below). */
|
---|
245 | #ifndef __GNUC__
|
---|
246 | union
|
---|
247 | {
|
---|
248 | unsigned short _size; /* Size of entire type in bytes. */
|
---|
249 | unsigned short _type; /* Reference to another type. */
|
---|
250 | } _u;
|
---|
251 | #else
|
---|
252 | __extension__
|
---|
253 | union
|
---|
254 | {
|
---|
255 | unsigned short ctt_size; /* Size of entire type in bytes. */
|
---|
256 | unsigned short ctt_type; /* Reference to another type. */
|
---|
257 | };
|
---|
258 | #endif
|
---|
259 | } ctf_stype_v1_t;
|
---|
260 |
|
---|
261 | typedef struct ctf_type_v1
|
---|
262 | {
|
---|
263 | uint32_t ctt_name; /* Reference to name in string table. */
|
---|
264 | unsigned short ctt_info; /* Encoded kind, variant length (see below). */
|
---|
265 | #ifndef __GNUC__
|
---|
266 | union
|
---|
267 | {
|
---|
268 | unsigned short _size; /* Always CTF_LSIZE_SENT_V1. */
|
---|
269 | unsigned short _type; /* Do not use. */
|
---|
270 | } _u;
|
---|
271 | #else
|
---|
272 | __extension__
|
---|
273 | union
|
---|
274 | {
|
---|
275 | unsigned short ctt_size; /* Always CTF_LSIZE_SENT_V1. */
|
---|
276 | unsigned short ctt_type; /* Do not use. */
|
---|
277 | };
|
---|
278 | #endif
|
---|
279 | uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */
|
---|
280 | uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */
|
---|
281 | } ctf_type_v1_t;
|
---|
282 |
|
---|
283 |
|
---|
284 | typedef struct ctf_stype
|
---|
285 | {
|
---|
286 | uint32_t ctt_name; /* Reference to name in string table. */
|
---|
287 | uint32_t ctt_info; /* Encoded kind, variant length (see below). */
|
---|
288 | #ifndef __GNUC__
|
---|
289 | union
|
---|
290 | {
|
---|
291 | uint32_t _size; /* Size of entire type in bytes. */
|
---|
292 | uint32_t _type; /* Reference to another type. */
|
---|
293 | } _u;
|
---|
294 | #else
|
---|
295 | __extension__
|
---|
296 | union
|
---|
297 | {
|
---|
298 | uint32_t ctt_size; /* Size of entire type in bytes. */
|
---|
299 | uint32_t ctt_type; /* Reference to another type. */
|
---|
300 | };
|
---|
301 | #endif
|
---|
302 | } ctf_stype_t;
|
---|
303 |
|
---|
304 | typedef struct ctf_type
|
---|
305 | {
|
---|
306 | uint32_t ctt_name; /* Reference to name in string table. */
|
---|
307 | uint32_t ctt_info; /* Encoded kind, variant length (see below). */
|
---|
308 | #ifndef __GNUC__
|
---|
309 | union
|
---|
310 | {
|
---|
311 | uint32_t _size; /* Always CTF_LSIZE_SENT. */
|
---|
312 | uint32_t _type; /* Do not use. */
|
---|
313 | } _u;
|
---|
314 | #else
|
---|
315 | __extension__
|
---|
316 | union
|
---|
317 | {
|
---|
318 | uint32_t ctt_size; /* Always CTF_LSIZE_SENT. */
|
---|
319 | uint32_t ctt_type; /* Do not use. */
|
---|
320 | };
|
---|
321 | #endif
|
---|
322 | uint32_t ctt_lsizehi; /* High 32 bits of type size in bytes. */
|
---|
323 | uint32_t ctt_lsizelo; /* Low 32 bits of type size in bytes. */
|
---|
324 | } ctf_type_t;
|
---|
325 |
|
---|
326 | #ifndef __GNUC__
|
---|
327 | #define ctt_size _u._size /* For fundamental types that have a size. */
|
---|
328 | #define ctt_type _u._type /* For types that reference another type. */
|
---|
329 | #endif
|
---|
330 |
|
---|
331 | /* The following macros and inline functions compose and decompose values for
|
---|
332 | ctt_info and ctt_name, as well as other structures that contain name
|
---|
333 | references. Use outside libdtrace-ctf itself is explicitly for access to CTF
|
---|
334 | files directly: types returned from the library will always appear to be
|
---|
335 | CTF_V2.
|
---|
336 |
|
---|
337 | v1: (transparently upgraded to v2 at open time: may be compiled out of the
|
---|
338 | library)
|
---|
339 | ------------------------
|
---|
340 | ctt_info: | kind | isroot | vlen |
|
---|
341 | ------------------------
|
---|
342 | 15 11 10 9 0
|
---|
343 |
|
---|
344 | v2:
|
---|
345 | ------------------------
|
---|
346 | ctt_info: | kind | isroot | vlen |
|
---|
347 | ------------------------
|
---|
348 | 31 26 25 24 0
|
---|
349 |
|
---|
350 | CTF_V1 and V2 _INFO_VLEN have the same interface:
|
---|
351 |
|
---|
352 | kind = CTF_*_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below)
|
---|
353 | vlen = CTF_*_INFO_VLEN(fp, c.ctt_info); <-- length of variable data list
|
---|
354 |
|
---|
355 | stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1)
|
---|
356 | offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset
|
---|
357 |
|
---|
358 | c.ctt_info = CTF_TYPE_INFO(kind, vlen);
|
---|
359 | c.ctt_name = CTF_TYPE_NAME(stid, offset); */
|
---|
360 |
|
---|
361 | #define CTF_V1_INFO_KIND(info) (((info) & 0xf800) >> 11)
|
---|
362 | #define CTF_V1_INFO_ISROOT(info) (((info) & 0x0400) >> 10)
|
---|
363 | #define CTF_V1_INFO_VLEN(info) (((info) & CTF_MAX_VLEN_V1))
|
---|
364 |
|
---|
365 | #define CTF_V2_INFO_KIND(info) (((info) & 0xfc000000) >> 26)
|
---|
366 | #define CTF_V2_INFO_ISROOT(info) (((info) & 0x2000000) >> 25)
|
---|
367 | #define CTF_V2_INFO_VLEN(info) (((info) & CTF_MAX_VLEN))
|
---|
368 |
|
---|
369 | #define CTF_NAME_STID(name) ((name) >> 31)
|
---|
370 | #define CTF_NAME_OFFSET(name) ((name) & CTF_MAX_NAME)
|
---|
371 | #define CTF_SET_STID(name, stid) ((name) | ((unsigned int) stid) << 31)
|
---|
372 |
|
---|
373 | /* V2 only. */
|
---|
374 | #define CTF_TYPE_INFO(kind, isroot, vlen) \
|
---|
375 | (((kind) << 26) | (((isroot) ? 1 : 0) << 25) | ((vlen) & CTF_MAX_VLEN))
|
---|
376 |
|
---|
377 | #define CTF_TYPE_NAME(stid, offset) \
|
---|
378 | (((stid) << 31) | ((offset) & CTF_MAX_NAME))
|
---|
379 |
|
---|
380 | /* The next set of macros are for public consumption only. Not used internally,
|
---|
381 | since the relevant type boundary is dependent upon the version of the file at
|
---|
382 | *opening* time, not the version after transparent upgrade. Use
|
---|
383 | ctf_type_isparent() / ctf_type_ischild() for that. */
|
---|
384 |
|
---|
385 | #define CTF_V2_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE)
|
---|
386 | #define CTF_V2_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE)
|
---|
387 | #define CTF_V2_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE)
|
---|
388 | #define CTF_V2_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE+1)) : (id))
|
---|
389 |
|
---|
390 | #define CTF_V1_TYPE_ISPARENT(fp, id) ((id) <= CTF_MAX_PTYPE_V1)
|
---|
391 | #define CTF_V1_TYPE_ISCHILD(fp, id) ((id) > CTF_MAX_PTYPE_V1)
|
---|
392 | #define CTF_V1_TYPE_TO_INDEX(id) ((id) & CTF_MAX_PTYPE_V1)
|
---|
393 | #define CTF_V1_INDEX_TO_TYPE(id, child) ((child) ? ((id) | (CTF_MAX_PTYPE_V1+1)) : (id))
|
---|
394 |
|
---|
395 | /* Valid for both V1 and V2. */
|
---|
396 | #define CTF_TYPE_LSIZE(cttp) \
|
---|
397 | (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo)
|
---|
398 | #define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32))
|
---|
399 | #define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size))
|
---|
400 |
|
---|
401 | #define CTF_STRTAB_0 0 /* String table id 0 (in-CTF). */
|
---|
402 | #define CTF_STRTAB_1 1 /* String table id 1 (ELF strtab). */
|
---|
403 |
|
---|
404 | /* Values for CTF_TYPE_KIND(). If the kind has an associated data list,
|
---|
405 | CTF_INFO_VLEN() will extract the number of elements in the list, and
|
---|
406 | the type of each element is shown in the comments below. */
|
---|
407 |
|
---|
408 | #define CTF_K_UNKNOWN 0 /* Unknown type (used for padding and
|
---|
409 | unrepresentable types). */
|
---|
410 | #define CTF_K_INTEGER 1 /* Variant data is CTF_INT_DATA (see below). */
|
---|
411 | #define CTF_K_FLOAT 2 /* Variant data is CTF_FP_DATA (see below). */
|
---|
412 | #define CTF_K_POINTER 3 /* ctt_type is referenced type. */
|
---|
413 | #define CTF_K_ARRAY 4 /* Variant data is single ctf_array_t. */
|
---|
414 | #define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is
|
---|
415 | list of argument types (unsigned short's for v1,
|
---|
416 | uint32_t's for v2). */
|
---|
417 | #define CTF_K_STRUCT 6 /* Variant data is list of ctf_member_t's. */
|
---|
418 | #define CTF_K_UNION 7 /* Variant data is list of ctf_member_t's. */
|
---|
419 | #define CTF_K_ENUM 8 /* Variant data is list of ctf_enum_t's. */
|
---|
420 | #define CTF_K_FORWARD 9 /* No additional data; ctt_name is tag. */
|
---|
421 | #define CTF_K_TYPEDEF 10 /* ctt_type is referenced type. */
|
---|
422 | #define CTF_K_VOLATILE 11 /* ctt_type is base type. */
|
---|
423 | #define CTF_K_CONST 12 /* ctt_type is base type. */
|
---|
424 | #define CTF_K_RESTRICT 13 /* ctt_type is base type. */
|
---|
425 | #define CTF_K_SLICE 14 /* Variant data is a ctf_slice_t. */
|
---|
426 |
|
---|
427 | #define CTF_K_MAX 63 /* Maximum possible (V2) CTF_K_* value. */
|
---|
428 |
|
---|
429 | /* Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits,
|
---|
430 | and size in bits are encoded as a single word using the following macros.
|
---|
431 | (However, you can also encode the offset and bitness in a slice.) */
|
---|
432 |
|
---|
433 | #define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24)
|
---|
434 | #define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16)
|
---|
435 | #define CTF_INT_BITS(data) (((data) & 0x0000ffff))
|
---|
436 |
|
---|
437 | #define CTF_INT_DATA(encoding, offset, bits) \
|
---|
438 | (((encoding) << 24) | ((offset) << 16) | (bits))
|
---|
439 |
|
---|
440 | #define CTF_INT_SIGNED 0x01 /* Integer is signed (otherwise unsigned). */
|
---|
441 | #define CTF_INT_CHAR 0x02 /* Character display format. */
|
---|
442 | #define CTF_INT_BOOL 0x04 /* Boolean display format. */
|
---|
443 | #define CTF_INT_VARARGS 0x08 /* Varargs display format. */
|
---|
444 |
|
---|
445 | /* Use CTF_CHAR to produce a char that agrees with the system's native
|
---|
446 | char signedness. */
|
---|
447 | #if CHAR_MIN == 0
|
---|
448 | # define CTF_CHAR (CTF_INT_CHAR)
|
---|
449 | #else
|
---|
450 | # define CTF_CHAR (CTF_INT_CHAR | CTF_INT_SIGNED)
|
---|
451 | #endif
|
---|
452 |
|
---|
453 | /* Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits,
|
---|
454 | and size in bits are encoded as a single word using the following macros.
|
---|
455 | (However, you can also encode the offset and bitness in a slice.) */
|
---|
456 |
|
---|
457 | #define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)
|
---|
458 | #define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16)
|
---|
459 | #define CTF_FP_BITS(data) (((data) & 0x0000ffff))
|
---|
460 |
|
---|
461 | #define CTF_FP_DATA(encoding, offset, bits) \
|
---|
462 | (((encoding) << 24) | ((offset) << 16) | (bits))
|
---|
463 |
|
---|
464 | /* Variant data when kind is CTF_K_FLOAT is an encoding in the top eight bits. */
|
---|
465 | #define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)
|
---|
466 |
|
---|
467 | #define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding. */
|
---|
468 | #define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding. */
|
---|
469 | #define CTF_FP_CPLX 3 /* Complex encoding. */
|
---|
470 | #define CTF_FP_DCPLX 4 /* Double complex encoding. */
|
---|
471 | #define CTF_FP_LDCPLX 5 /* Long double complex encoding. */
|
---|
472 | #define CTF_FP_LDOUBLE 6 /* Long double encoding. */
|
---|
473 | #define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding. */
|
---|
474 | #define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding. */
|
---|
475 | #define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding. */
|
---|
476 | #define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding. */
|
---|
477 | #define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding. */
|
---|
478 | #define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding. */
|
---|
479 |
|
---|
480 | #define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */
|
---|
481 |
|
---|
482 | /* A slice increases the offset and reduces the bitness of the referenced
|
---|
483 | ctt_type, which must be a type which has an encoding (fp, int, or enum). We
|
---|
484 | also store the referenced type in here, because it is easier to keep the
|
---|
485 | ctt_size correct for the slice than to shuffle the size into here and keep
|
---|
486 | the ctt_type where it is for other types.
|
---|
487 |
|
---|
488 | In a future version, where we loosen requirements on alignment in the CTF
|
---|
489 | file, the cts_offset and cts_bits will be chars: but for now they must be
|
---|
490 | shorts or everything after a slice will become unaligned. */
|
---|
491 |
|
---|
492 | typedef struct ctf_slice
|
---|
493 | {
|
---|
494 | uint32_t cts_type;
|
---|
495 | unsigned short cts_offset;
|
---|
496 | unsigned short cts_bits;
|
---|
497 | } ctf_slice_t;
|
---|
498 |
|
---|
499 | typedef struct ctf_array_v1
|
---|
500 | {
|
---|
501 | unsigned short cta_contents; /* Reference to type of array contents. */
|
---|
502 | unsigned short cta_index; /* Reference to type of array index. */
|
---|
503 | uint32_t cta_nelems; /* Number of elements. */
|
---|
504 | } ctf_array_v1_t;
|
---|
505 |
|
---|
506 | typedef struct ctf_array
|
---|
507 | {
|
---|
508 | uint32_t cta_contents; /* Reference to type of array contents. */
|
---|
509 | uint32_t cta_index; /* Reference to type of array index. */
|
---|
510 | uint32_t cta_nelems; /* Number of elements. */
|
---|
511 | } ctf_array_t;
|
---|
512 |
|
---|
513 | /* Most structure members have bit offsets that can be expressed using a short.
|
---|
514 | Some don't. ctf_member_t is used for structs which cannot contain any of
|
---|
515 | these large offsets, whereas ctf_lmember_t is used in the latter case. If
|
---|
516 | any member of a given struct has an offset that cannot be expressed using a
|
---|
517 | uint32_t, all members will be stored as type ctf_lmember_t. This is expected
|
---|
518 | to be very rare (but nonetheless possible). */
|
---|
519 |
|
---|
520 | #define CTF_LSTRUCT_THRESH 536870912
|
---|
521 |
|
---|
522 | /* In v1, the same is true, except that lmembers are used for structs >= 8192
|
---|
523 | bytes in size. (The ordering of members in the ctf_member_* structures is
|
---|
524 | different to improve padding.) */
|
---|
525 |
|
---|
526 | #define CTF_LSTRUCT_THRESH_V1 8192
|
---|
527 |
|
---|
528 | typedef struct ctf_member_v1
|
---|
529 | {
|
---|
530 | uint32_t ctm_name; /* Reference to name in string table. */
|
---|
531 | unsigned short ctm_type; /* Reference to type of member. */
|
---|
532 | unsigned short ctm_offset; /* Offset of this member in bits. */
|
---|
533 | } ctf_member_v1_t;
|
---|
534 |
|
---|
535 | typedef struct ctf_lmember_v1
|
---|
536 | {
|
---|
537 | uint32_t ctlm_name; /* Reference to name in string table. */
|
---|
538 | unsigned short ctlm_type; /* Reference to type of member. */
|
---|
539 | unsigned short ctlm_pad; /* Padding. */
|
---|
540 | uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */
|
---|
541 | uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */
|
---|
542 | } ctf_lmember_v1_t;
|
---|
543 |
|
---|
544 | typedef struct ctf_member_v2
|
---|
545 | {
|
---|
546 | uint32_t ctm_name; /* Reference to name in string table. */
|
---|
547 | uint32_t ctm_offset; /* Offset of this member in bits. */
|
---|
548 | uint32_t ctm_type; /* Reference to type of member. */
|
---|
549 | } ctf_member_t;
|
---|
550 |
|
---|
551 | typedef struct ctf_lmember_v2
|
---|
552 | {
|
---|
553 | uint32_t ctlm_name; /* Reference to name in string table. */
|
---|
554 | uint32_t ctlm_offsethi; /* High 32 bits of member offset in bits. */
|
---|
555 | uint32_t ctlm_type; /* Reference to type of member. */
|
---|
556 | uint32_t ctlm_offsetlo; /* Low 32 bits of member offset in bits. */
|
---|
557 | } ctf_lmember_t;
|
---|
558 |
|
---|
559 | #define CTF_LMEM_OFFSET(ctlmp) \
|
---|
560 | (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo)
|
---|
561 | #define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32))
|
---|
562 | #define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset))
|
---|
563 |
|
---|
564 | typedef struct ctf_enum
|
---|
565 | {
|
---|
566 | uint32_t cte_name; /* Reference to name in string table. */
|
---|
567 | int32_t cte_value; /* Value associated with this name. */
|
---|
568 | } ctf_enum_t;
|
---|
569 |
|
---|
570 | /* The ctf_archive is a collection of ctf_dict_t's stored together. The format
|
---|
571 | is suitable for mmap()ing: this control structure merely describes the
|
---|
572 | mmap()ed archive (and overlaps the first few bytes of it), hence the
|
---|
573 | greater care taken with integral types. All CTF files in an archive
|
---|
574 | must have the same data model. (This is not validated.)
|
---|
575 |
|
---|
576 | All integers in this structure are stored in little-endian byte order.
|
---|
577 |
|
---|
578 | The code relies on the fact that everything in this header is a uint64_t
|
---|
579 | and thus the header needs no padding (in particular, that no padding is
|
---|
580 | needed between ctfa_ctfs and the unnamed ctfa_archive_modent array
|
---|
581 | that follows it).
|
---|
582 |
|
---|
583 | This is *not* the same as the data structure returned by the ctf_arc_*()
|
---|
584 | functions: this is the low-level on-disk representation. */
|
---|
585 |
|
---|
586 | #define CTFA_MAGIC 0x8b47f2a4d7623eeb /* Random. */
|
---|
587 | struct ctf_archive
|
---|
588 | {
|
---|
589 | /* Magic number. (In loaded files, overwritten with the file size
|
---|
590 | so ctf_arc_close() knows how much to munmap()). */
|
---|
591 | uint64_t ctfa_magic;
|
---|
592 |
|
---|
593 | /* CTF data model. */
|
---|
594 | uint64_t ctfa_model;
|
---|
595 |
|
---|
596 | /* Number of CTF dicts in the archive. */
|
---|
597 | uint64_t ctfa_ndicts;
|
---|
598 |
|
---|
599 | /* Offset of the name table. */
|
---|
600 | uint64_t ctfa_names;
|
---|
601 |
|
---|
602 | /* Offset of the CTF table. Each element starts with a size (a uint64_t
|
---|
603 | in network byte order) then a ctf_dict_t of that size. */
|
---|
604 | uint64_t ctfa_ctfs;
|
---|
605 | };
|
---|
606 |
|
---|
607 | /* An array of ctfa_nnamed of this structure lies at
|
---|
608 | ctf_archive[ctf_archive->ctfa_modents] and gives the ctfa_ctfs or
|
---|
609 | ctfa_names-relative offsets of each name or ctf_dict_t. */
|
---|
610 |
|
---|
611 | typedef struct ctf_archive_modent
|
---|
612 | {
|
---|
613 | uint64_t name_offset;
|
---|
614 | uint64_t ctf_offset;
|
---|
615 | } ctf_archive_modent_t;
|
---|
616 |
|
---|
617 | #ifdef __cplusplus
|
---|
618 | }
|
---|
619 | #endif
|
---|
620 |
|
---|
621 | #endif /* _CTF_H */
|
---|