1 | // random number generation (out of line) -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2009-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 |
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 |
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file bits/random.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{random}
|
---|
28 | */
|
---|
29 |
|
---|
30 | #ifndef _RANDOM_TCC
|
---|
31 | #define _RANDOM_TCC 1
|
---|
32 |
|
---|
33 | #include <numeric> // std::accumulate and std::partial_sum
|
---|
34 |
|
---|
35 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
36 | {
|
---|
37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * (Further) implementation-space details.
|
---|
41 | */
|
---|
42 | namespace __detail
|
---|
43 | {
|
---|
44 | // General case for x = (ax + c) mod m -- use Schrage's algorithm
|
---|
45 | // to avoid integer overflow.
|
---|
46 | //
|
---|
47 | // Preconditions: a > 0, m > 0.
|
---|
48 | //
|
---|
49 | // Note: only works correctly for __m % __a < __m / __a.
|
---|
50 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
|
---|
51 | _Tp
|
---|
52 | _Mod<_Tp, __m, __a, __c, false, true>::
|
---|
53 | __calc(_Tp __x)
|
---|
54 | {
|
---|
55 | if (__a == 1)
|
---|
56 | __x %= __m;
|
---|
57 | else
|
---|
58 | {
|
---|
59 | static const _Tp __q = __m / __a;
|
---|
60 | static const _Tp __r = __m % __a;
|
---|
61 |
|
---|
62 | _Tp __t1 = __a * (__x % __q);
|
---|
63 | _Tp __t2 = __r * (__x / __q);
|
---|
64 | if (__t1 >= __t2)
|
---|
65 | __x = __t1 - __t2;
|
---|
66 | else
|
---|
67 | __x = __m - __t2 + __t1;
|
---|
68 | }
|
---|
69 |
|
---|
70 | if (__c != 0)
|
---|
71 | {
|
---|
72 | const _Tp __d = __m - __x;
|
---|
73 | if (__d > __c)
|
---|
74 | __x += __c;
|
---|
75 | else
|
---|
76 | __x = __c - __d;
|
---|
77 | }
|
---|
78 | return __x;
|
---|
79 | }
|
---|
80 |
|
---|
81 | template<typename _InputIterator, typename _OutputIterator,
|
---|
82 | typename _Tp>
|
---|
83 | _OutputIterator
|
---|
84 | __normalize(_InputIterator __first, _InputIterator __last,
|
---|
85 | _OutputIterator __result, const _Tp& __factor)
|
---|
86 | {
|
---|
87 | for (; __first != __last; ++__first, ++__result)
|
---|
88 | *__result = *__first / __factor;
|
---|
89 | return __result;
|
---|
90 | }
|
---|
91 |
|
---|
92 | } // namespace __detail
|
---|
93 |
|
---|
94 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
95 | constexpr _UIntType
|
---|
96 | linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
|
---|
97 |
|
---|
98 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
99 | constexpr _UIntType
|
---|
100 | linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
|
---|
101 |
|
---|
102 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
103 | constexpr _UIntType
|
---|
104 | linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
|
---|
105 |
|
---|
106 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
107 | constexpr _UIntType
|
---|
108 | linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Seeds the LCR with integral value @p __s, adjusted so that the
|
---|
112 | * ring identity is never a member of the convergence set.
|
---|
113 | */
|
---|
114 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
115 | void
|
---|
116 | linear_congruential_engine<_UIntType, __a, __c, __m>::
|
---|
117 | seed(result_type __s)
|
---|
118 | {
|
---|
119 | if ((__detail::__mod<_UIntType, __m>(__c) == 0)
|
---|
120 | && (__detail::__mod<_UIntType, __m>(__s) == 0))
|
---|
121 | _M_x = 1;
|
---|
122 | else
|
---|
123 | _M_x = __detail::__mod<_UIntType, __m>(__s);
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Seeds the LCR engine with a value generated by @p __q.
|
---|
128 | */
|
---|
129 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
|
---|
130 | template<typename _Sseq>
|
---|
131 | auto
|
---|
132 | linear_congruential_engine<_UIntType, __a, __c, __m>::
|
---|
133 | seed(_Sseq& __q)
|
---|
134 | -> _If_seed_seq<_Sseq>
|
---|
135 | {
|
---|
136 | const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
|
---|
137 | : std::__lg(__m);
|
---|
138 | const _UIntType __k = (__k0 + 31) / 32;
|
---|
139 | uint_least32_t __arr[__k + 3];
|
---|
140 | __q.generate(__arr + 0, __arr + __k + 3);
|
---|
141 | _UIntType __factor = 1u;
|
---|
142 | _UIntType __sum = 0u;
|
---|
143 | for (size_t __j = 0; __j < __k; ++__j)
|
---|
144 | {
|
---|
145 | __sum += __arr[__j + 3] * __factor;
|
---|
146 | __factor *= __detail::_Shift<_UIntType, 32>::__value;
|
---|
147 | }
|
---|
148 | seed(__sum);
|
---|
149 | }
|
---|
150 |
|
---|
151 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
|
---|
152 | typename _CharT, typename _Traits>
|
---|
153 | std::basic_ostream<_CharT, _Traits>&
|
---|
154 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
155 | const linear_congruential_engine<_UIntType,
|
---|
156 | __a, __c, __m>& __lcr)
|
---|
157 | {
|
---|
158 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
159 |
|
---|
160 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
161 | const _CharT __fill = __os.fill();
|
---|
162 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
---|
163 | __os.fill(__os.widen(' '));
|
---|
164 |
|
---|
165 | __os << __lcr._M_x;
|
---|
166 |
|
---|
167 | __os.flags(__flags);
|
---|
168 | __os.fill(__fill);
|
---|
169 | return __os;
|
---|
170 | }
|
---|
171 |
|
---|
172 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
|
---|
173 | typename _CharT, typename _Traits>
|
---|
174 | std::basic_istream<_CharT, _Traits>&
|
---|
175 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
176 | linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
|
---|
177 | {
|
---|
178 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
179 |
|
---|
180 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
181 | __is.flags(__ios_base::dec);
|
---|
182 |
|
---|
183 | __is >> __lcr._M_x;
|
---|
184 |
|
---|
185 | __is.flags(__flags);
|
---|
186 | return __is;
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | template<typename _UIntType,
|
---|
191 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
192 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
193 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
194 | _UIntType __f>
|
---|
195 | constexpr size_t
|
---|
196 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
197 | __s, __b, __t, __c, __l, __f>::word_size;
|
---|
198 |
|
---|
199 | template<typename _UIntType,
|
---|
200 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
201 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
202 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
203 | _UIntType __f>
|
---|
204 | constexpr size_t
|
---|
205 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
206 | __s, __b, __t, __c, __l, __f>::state_size;
|
---|
207 |
|
---|
208 | template<typename _UIntType,
|
---|
209 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
210 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
211 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
212 | _UIntType __f>
|
---|
213 | constexpr size_t
|
---|
214 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
215 | __s, __b, __t, __c, __l, __f>::shift_size;
|
---|
216 |
|
---|
217 | template<typename _UIntType,
|
---|
218 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
219 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
220 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
221 | _UIntType __f>
|
---|
222 | constexpr size_t
|
---|
223 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
224 | __s, __b, __t, __c, __l, __f>::mask_bits;
|
---|
225 |
|
---|
226 | template<typename _UIntType,
|
---|
227 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
228 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
229 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
230 | _UIntType __f>
|
---|
231 | constexpr _UIntType
|
---|
232 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
233 | __s, __b, __t, __c, __l, __f>::xor_mask;
|
---|
234 |
|
---|
235 | template<typename _UIntType,
|
---|
236 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
237 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
238 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
239 | _UIntType __f>
|
---|
240 | constexpr size_t
|
---|
241 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
242 | __s, __b, __t, __c, __l, __f>::tempering_u;
|
---|
243 |
|
---|
244 | template<typename _UIntType,
|
---|
245 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
246 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
247 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
248 | _UIntType __f>
|
---|
249 | constexpr _UIntType
|
---|
250 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
251 | __s, __b, __t, __c, __l, __f>::tempering_d;
|
---|
252 |
|
---|
253 | template<typename _UIntType,
|
---|
254 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
255 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
256 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
257 | _UIntType __f>
|
---|
258 | constexpr size_t
|
---|
259 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
260 | __s, __b, __t, __c, __l, __f>::tempering_s;
|
---|
261 |
|
---|
262 | template<typename _UIntType,
|
---|
263 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
264 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
265 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
266 | _UIntType __f>
|
---|
267 | constexpr _UIntType
|
---|
268 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
269 | __s, __b, __t, __c, __l, __f>::tempering_b;
|
---|
270 |
|
---|
271 | template<typename _UIntType,
|
---|
272 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
273 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
274 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
275 | _UIntType __f>
|
---|
276 | constexpr size_t
|
---|
277 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
278 | __s, __b, __t, __c, __l, __f>::tempering_t;
|
---|
279 |
|
---|
280 | template<typename _UIntType,
|
---|
281 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
282 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
283 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
284 | _UIntType __f>
|
---|
285 | constexpr _UIntType
|
---|
286 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
287 | __s, __b, __t, __c, __l, __f>::tempering_c;
|
---|
288 |
|
---|
289 | template<typename _UIntType,
|
---|
290 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
291 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
292 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
293 | _UIntType __f>
|
---|
294 | constexpr size_t
|
---|
295 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
296 | __s, __b, __t, __c, __l, __f>::tempering_l;
|
---|
297 |
|
---|
298 | template<typename _UIntType,
|
---|
299 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
300 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
301 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
302 | _UIntType __f>
|
---|
303 | constexpr _UIntType
|
---|
304 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
305 | __s, __b, __t, __c, __l, __f>::
|
---|
306 | initialization_multiplier;
|
---|
307 |
|
---|
308 | template<typename _UIntType,
|
---|
309 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
310 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
311 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
312 | _UIntType __f>
|
---|
313 | constexpr _UIntType
|
---|
314 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
315 | __s, __b, __t, __c, __l, __f>::default_seed;
|
---|
316 |
|
---|
317 | template<typename _UIntType,
|
---|
318 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
319 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
320 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
321 | _UIntType __f>
|
---|
322 | void
|
---|
323 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
324 | __s, __b, __t, __c, __l, __f>::
|
---|
325 | seed(result_type __sd)
|
---|
326 | {
|
---|
327 | _M_x[0] = __detail::__mod<_UIntType,
|
---|
328 | __detail::_Shift<_UIntType, __w>::__value>(__sd);
|
---|
329 |
|
---|
330 | for (size_t __i = 1; __i < state_size; ++__i)
|
---|
331 | {
|
---|
332 | _UIntType __x = _M_x[__i - 1];
|
---|
333 | __x ^= __x >> (__w - 2);
|
---|
334 | __x *= __f;
|
---|
335 | __x += __detail::__mod<_UIntType, __n>(__i);
|
---|
336 | _M_x[__i] = __detail::__mod<_UIntType,
|
---|
337 | __detail::_Shift<_UIntType, __w>::__value>(__x);
|
---|
338 | }
|
---|
339 | _M_p = state_size;
|
---|
340 | }
|
---|
341 |
|
---|
342 | template<typename _UIntType,
|
---|
343 | size_t __w, size_t __n, size_t __m, size_t __r,
|
---|
344 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
345 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
346 | _UIntType __f>
|
---|
347 | template<typename _Sseq>
|
---|
348 | auto
|
---|
349 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
350 | __s, __b, __t, __c, __l, __f>::
|
---|
351 | seed(_Sseq& __q)
|
---|
352 | -> _If_seed_seq<_Sseq>
|
---|
353 | {
|
---|
354 | const _UIntType __upper_mask = (~_UIntType()) << __r;
|
---|
355 | const size_t __k = (__w + 31) / 32;
|
---|
356 | uint_least32_t __arr[__n * __k];
|
---|
357 | __q.generate(__arr + 0, __arr + __n * __k);
|
---|
358 |
|
---|
359 | bool __zero = true;
|
---|
360 | for (size_t __i = 0; __i < state_size; ++__i)
|
---|
361 | {
|
---|
362 | _UIntType __factor = 1u;
|
---|
363 | _UIntType __sum = 0u;
|
---|
364 | for (size_t __j = 0; __j < __k; ++__j)
|
---|
365 | {
|
---|
366 | __sum += __arr[__k * __i + __j] * __factor;
|
---|
367 | __factor *= __detail::_Shift<_UIntType, 32>::__value;
|
---|
368 | }
|
---|
369 | _M_x[__i] = __detail::__mod<_UIntType,
|
---|
370 | __detail::_Shift<_UIntType, __w>::__value>(__sum);
|
---|
371 |
|
---|
372 | if (__zero)
|
---|
373 | {
|
---|
374 | if (__i == 0)
|
---|
375 | {
|
---|
376 | if ((_M_x[0] & __upper_mask) != 0u)
|
---|
377 | __zero = false;
|
---|
378 | }
|
---|
379 | else if (_M_x[__i] != 0u)
|
---|
380 | __zero = false;
|
---|
381 | }
|
---|
382 | }
|
---|
383 | if (__zero)
|
---|
384 | _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
|
---|
385 | _M_p = state_size;
|
---|
386 | }
|
---|
387 |
|
---|
388 | template<typename _UIntType, size_t __w,
|
---|
389 | size_t __n, size_t __m, size_t __r,
|
---|
390 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
391 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
392 | _UIntType __f>
|
---|
393 | void
|
---|
394 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
395 | __s, __b, __t, __c, __l, __f>::
|
---|
396 | _M_gen_rand(void)
|
---|
397 | {
|
---|
398 | const _UIntType __upper_mask = (~_UIntType()) << __r;
|
---|
399 | const _UIntType __lower_mask = ~__upper_mask;
|
---|
400 |
|
---|
401 | for (size_t __k = 0; __k < (__n - __m); ++__k)
|
---|
402 | {
|
---|
403 | _UIntType __y = ((_M_x[__k] & __upper_mask)
|
---|
404 | | (_M_x[__k + 1] & __lower_mask));
|
---|
405 | _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
|
---|
406 | ^ ((__y & 0x01) ? __a : 0));
|
---|
407 | }
|
---|
408 |
|
---|
409 | for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
|
---|
410 | {
|
---|
411 | _UIntType __y = ((_M_x[__k] & __upper_mask)
|
---|
412 | | (_M_x[__k + 1] & __lower_mask));
|
---|
413 | _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
|
---|
414 | ^ ((__y & 0x01) ? __a : 0));
|
---|
415 | }
|
---|
416 |
|
---|
417 | _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
|
---|
418 | | (_M_x[0] & __lower_mask));
|
---|
419 | _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
|
---|
420 | ^ ((__y & 0x01) ? __a : 0));
|
---|
421 | _M_p = 0;
|
---|
422 | }
|
---|
423 |
|
---|
424 | template<typename _UIntType, size_t __w,
|
---|
425 | size_t __n, size_t __m, size_t __r,
|
---|
426 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
427 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
428 | _UIntType __f>
|
---|
429 | void
|
---|
430 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
431 | __s, __b, __t, __c, __l, __f>::
|
---|
432 | discard(unsigned long long __z)
|
---|
433 | {
|
---|
434 | while (__z > state_size - _M_p)
|
---|
435 | {
|
---|
436 | __z -= state_size - _M_p;
|
---|
437 | _M_gen_rand();
|
---|
438 | }
|
---|
439 | _M_p += __z;
|
---|
440 | }
|
---|
441 |
|
---|
442 | template<typename _UIntType, size_t __w,
|
---|
443 | size_t __n, size_t __m, size_t __r,
|
---|
444 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
445 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
446 | _UIntType __f>
|
---|
447 | typename
|
---|
448 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
449 | __s, __b, __t, __c, __l, __f>::result_type
|
---|
450 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
|
---|
451 | __s, __b, __t, __c, __l, __f>::
|
---|
452 | operator()()
|
---|
453 | {
|
---|
454 | // Reload the vector - cost is O(n) amortized over n calls.
|
---|
455 | if (_M_p >= state_size)
|
---|
456 | _M_gen_rand();
|
---|
457 |
|
---|
458 | // Calculate o(x(i)).
|
---|
459 | result_type __z = _M_x[_M_p++];
|
---|
460 | __z ^= (__z >> __u) & __d;
|
---|
461 | __z ^= (__z << __s) & __b;
|
---|
462 | __z ^= (__z << __t) & __c;
|
---|
463 | __z ^= (__z >> __l);
|
---|
464 |
|
---|
465 | return __z;
|
---|
466 | }
|
---|
467 |
|
---|
468 | template<typename _UIntType, size_t __w,
|
---|
469 | size_t __n, size_t __m, size_t __r,
|
---|
470 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
471 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
472 | _UIntType __f, typename _CharT, typename _Traits>
|
---|
473 | std::basic_ostream<_CharT, _Traits>&
|
---|
474 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
475 | const mersenne_twister_engine<_UIntType, __w, __n, __m,
|
---|
476 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
|
---|
477 | {
|
---|
478 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
479 |
|
---|
480 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
481 | const _CharT __fill = __os.fill();
|
---|
482 | const _CharT __space = __os.widen(' ');
|
---|
483 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
---|
484 | __os.fill(__space);
|
---|
485 |
|
---|
486 | for (size_t __i = 0; __i < __n; ++__i)
|
---|
487 | __os << __x._M_x[__i] << __space;
|
---|
488 | __os << __x._M_p;
|
---|
489 |
|
---|
490 | __os.flags(__flags);
|
---|
491 | __os.fill(__fill);
|
---|
492 | return __os;
|
---|
493 | }
|
---|
494 |
|
---|
495 | template<typename _UIntType, size_t __w,
|
---|
496 | size_t __n, size_t __m, size_t __r,
|
---|
497 | _UIntType __a, size_t __u, _UIntType __d, size_t __s,
|
---|
498 | _UIntType __b, size_t __t, _UIntType __c, size_t __l,
|
---|
499 | _UIntType __f, typename _CharT, typename _Traits>
|
---|
500 | std::basic_istream<_CharT, _Traits>&
|
---|
501 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
502 | mersenne_twister_engine<_UIntType, __w, __n, __m,
|
---|
503 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
|
---|
504 | {
|
---|
505 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
506 |
|
---|
507 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
508 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
509 |
|
---|
510 | for (size_t __i = 0; __i < __n; ++__i)
|
---|
511 | __is >> __x._M_x[__i];
|
---|
512 | __is >> __x._M_p;
|
---|
513 |
|
---|
514 | __is.flags(__flags);
|
---|
515 | return __is;
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
520 | constexpr size_t
|
---|
521 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
|
---|
522 |
|
---|
523 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
524 | constexpr size_t
|
---|
525 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
|
---|
526 |
|
---|
527 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
528 | constexpr size_t
|
---|
529 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
|
---|
530 |
|
---|
531 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
532 | constexpr _UIntType
|
---|
533 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
|
---|
534 |
|
---|
535 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
536 | void
|
---|
537 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
---|
538 | seed(result_type __value)
|
---|
539 | {
|
---|
540 | std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
|
---|
541 | __lcg(__value == 0u ? default_seed : __value);
|
---|
542 |
|
---|
543 | const size_t __n = (__w + 31) / 32;
|
---|
544 |
|
---|
545 | for (size_t __i = 0; __i < long_lag; ++__i)
|
---|
546 | {
|
---|
547 | _UIntType __sum = 0u;
|
---|
548 | _UIntType __factor = 1u;
|
---|
549 | for (size_t __j = 0; __j < __n; ++__j)
|
---|
550 | {
|
---|
551 | __sum += __detail::__mod<uint_least32_t,
|
---|
552 | __detail::_Shift<uint_least32_t, 32>::__value>
|
---|
553 | (__lcg()) * __factor;
|
---|
554 | __factor *= __detail::_Shift<_UIntType, 32>::__value;
|
---|
555 | }
|
---|
556 | _M_x[__i] = __detail::__mod<_UIntType,
|
---|
557 | __detail::_Shift<_UIntType, __w>::__value>(__sum);
|
---|
558 | }
|
---|
559 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
|
---|
560 | _M_p = 0;
|
---|
561 | }
|
---|
562 |
|
---|
563 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
564 | template<typename _Sseq>
|
---|
565 | auto
|
---|
566 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
---|
567 | seed(_Sseq& __q)
|
---|
568 | -> _If_seed_seq<_Sseq>
|
---|
569 | {
|
---|
570 | const size_t __k = (__w + 31) / 32;
|
---|
571 | uint_least32_t __arr[__r * __k];
|
---|
572 | __q.generate(__arr + 0, __arr + __r * __k);
|
---|
573 |
|
---|
574 | for (size_t __i = 0; __i < long_lag; ++__i)
|
---|
575 | {
|
---|
576 | _UIntType __sum = 0u;
|
---|
577 | _UIntType __factor = 1u;
|
---|
578 | for (size_t __j = 0; __j < __k; ++__j)
|
---|
579 | {
|
---|
580 | __sum += __arr[__k * __i + __j] * __factor;
|
---|
581 | __factor *= __detail::_Shift<_UIntType, 32>::__value;
|
---|
582 | }
|
---|
583 | _M_x[__i] = __detail::__mod<_UIntType,
|
---|
584 | __detail::_Shift<_UIntType, __w>::__value>(__sum);
|
---|
585 | }
|
---|
586 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
|
---|
587 | _M_p = 0;
|
---|
588 | }
|
---|
589 |
|
---|
590 | template<typename _UIntType, size_t __w, size_t __s, size_t __r>
|
---|
591 | typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
---|
592 | result_type
|
---|
593 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::
|
---|
594 | operator()()
|
---|
595 | {
|
---|
596 | // Derive short lag index from current index.
|
---|
597 | long __ps = _M_p - short_lag;
|
---|
598 | if (__ps < 0)
|
---|
599 | __ps += long_lag;
|
---|
600 |
|
---|
601 | // Calculate new x(i) without overflow or division.
|
---|
602 | // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
|
---|
603 | // cannot overflow.
|
---|
604 | _UIntType __xi;
|
---|
605 | if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
|
---|
606 | {
|
---|
607 | __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
|
---|
608 | _M_carry = 0;
|
---|
609 | }
|
---|
610 | else
|
---|
611 | {
|
---|
612 | __xi = (__detail::_Shift<_UIntType, __w>::__value
|
---|
613 | - _M_x[_M_p] - _M_carry + _M_x[__ps]);
|
---|
614 | _M_carry = 1;
|
---|
615 | }
|
---|
616 | _M_x[_M_p] = __xi;
|
---|
617 |
|
---|
618 | // Adjust current index to loop around in ring buffer.
|
---|
619 | if (++_M_p >= long_lag)
|
---|
620 | _M_p = 0;
|
---|
621 |
|
---|
622 | return __xi;
|
---|
623 | }
|
---|
624 |
|
---|
625 | template<typename _UIntType, size_t __w, size_t __s, size_t __r,
|
---|
626 | typename _CharT, typename _Traits>
|
---|
627 | std::basic_ostream<_CharT, _Traits>&
|
---|
628 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
629 | const subtract_with_carry_engine<_UIntType,
|
---|
630 | __w, __s, __r>& __x)
|
---|
631 | {
|
---|
632 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
633 |
|
---|
634 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
635 | const _CharT __fill = __os.fill();
|
---|
636 | const _CharT __space = __os.widen(' ');
|
---|
637 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
---|
638 | __os.fill(__space);
|
---|
639 |
|
---|
640 | for (size_t __i = 0; __i < __r; ++__i)
|
---|
641 | __os << __x._M_x[__i] << __space;
|
---|
642 | __os << __x._M_carry << __space << __x._M_p;
|
---|
643 |
|
---|
644 | __os.flags(__flags);
|
---|
645 | __os.fill(__fill);
|
---|
646 | return __os;
|
---|
647 | }
|
---|
648 |
|
---|
649 | template<typename _UIntType, size_t __w, size_t __s, size_t __r,
|
---|
650 | typename _CharT, typename _Traits>
|
---|
651 | std::basic_istream<_CharT, _Traits>&
|
---|
652 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
653 | subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
|
---|
654 | {
|
---|
655 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
656 |
|
---|
657 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
658 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
659 |
|
---|
660 | for (size_t __i = 0; __i < __r; ++__i)
|
---|
661 | __is >> __x._M_x[__i];
|
---|
662 | __is >> __x._M_carry;
|
---|
663 | __is >> __x._M_p;
|
---|
664 |
|
---|
665 | __is.flags(__flags);
|
---|
666 | return __is;
|
---|
667 | }
|
---|
668 |
|
---|
669 |
|
---|
670 | template<typename _RandomNumberEngine, size_t __p, size_t __r>
|
---|
671 | constexpr size_t
|
---|
672 | discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
|
---|
673 |
|
---|
674 | template<typename _RandomNumberEngine, size_t __p, size_t __r>
|
---|
675 | constexpr size_t
|
---|
676 | discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
|
---|
677 |
|
---|
678 | template<typename _RandomNumberEngine, size_t __p, size_t __r>
|
---|
679 | typename discard_block_engine<_RandomNumberEngine,
|
---|
680 | __p, __r>::result_type
|
---|
681 | discard_block_engine<_RandomNumberEngine, __p, __r>::
|
---|
682 | operator()()
|
---|
683 | {
|
---|
684 | if (_M_n >= used_block)
|
---|
685 | {
|
---|
686 | _M_b.discard(block_size - _M_n);
|
---|
687 | _M_n = 0;
|
---|
688 | }
|
---|
689 | ++_M_n;
|
---|
690 | return _M_b();
|
---|
691 | }
|
---|
692 |
|
---|
693 | template<typename _RandomNumberEngine, size_t __p, size_t __r,
|
---|
694 | typename _CharT, typename _Traits>
|
---|
695 | std::basic_ostream<_CharT, _Traits>&
|
---|
696 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
697 | const discard_block_engine<_RandomNumberEngine,
|
---|
698 | __p, __r>& __x)
|
---|
699 | {
|
---|
700 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
701 |
|
---|
702 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
703 | const _CharT __fill = __os.fill();
|
---|
704 | const _CharT __space = __os.widen(' ');
|
---|
705 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
---|
706 | __os.fill(__space);
|
---|
707 |
|
---|
708 | __os << __x.base() << __space << __x._M_n;
|
---|
709 |
|
---|
710 | __os.flags(__flags);
|
---|
711 | __os.fill(__fill);
|
---|
712 | return __os;
|
---|
713 | }
|
---|
714 |
|
---|
715 | template<typename _RandomNumberEngine, size_t __p, size_t __r,
|
---|
716 | typename _CharT, typename _Traits>
|
---|
717 | std::basic_istream<_CharT, _Traits>&
|
---|
718 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
719 | discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
|
---|
720 | {
|
---|
721 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
722 |
|
---|
723 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
724 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
725 |
|
---|
726 | __is >> __x._M_b >> __x._M_n;
|
---|
727 |
|
---|
728 | __is.flags(__flags);
|
---|
729 | return __is;
|
---|
730 | }
|
---|
731 |
|
---|
732 |
|
---|
733 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
|
---|
734 | typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
|
---|
735 | result_type
|
---|
736 | independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
|
---|
737 | operator()()
|
---|
738 | {
|
---|
739 | typedef typename _RandomNumberEngine::result_type _Eresult_type;
|
---|
740 | const _Eresult_type __r
|
---|
741 | = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max()
|
---|
742 | ? _M_b.max() - _M_b.min() + 1 : 0);
|
---|
743 | const unsigned __edig = std::numeric_limits<_Eresult_type>::digits;
|
---|
744 | const unsigned __m = __r ? std::__lg(__r) : __edig;
|
---|
745 |
|
---|
746 | typedef typename std::common_type<_Eresult_type, result_type>::type
|
---|
747 | __ctype;
|
---|
748 | const unsigned __cdig = std::numeric_limits<__ctype>::digits;
|
---|
749 |
|
---|
750 | unsigned __n, __n0;
|
---|
751 | __ctype __s0, __s1, __y0, __y1;
|
---|
752 |
|
---|
753 | for (size_t __i = 0; __i < 2; ++__i)
|
---|
754 | {
|
---|
755 | __n = (__w + __m - 1) / __m + __i;
|
---|
756 | __n0 = __n - __w % __n;
|
---|
757 | const unsigned __w0 = __w / __n; // __w0 <= __m
|
---|
758 |
|
---|
759 | __s0 = 0;
|
---|
760 | __s1 = 0;
|
---|
761 | if (__w0 < __cdig)
|
---|
762 | {
|
---|
763 | __s0 = __ctype(1) << __w0;
|
---|
764 | __s1 = __s0 << 1;
|
---|
765 | }
|
---|
766 |
|
---|
767 | __y0 = 0;
|
---|
768 | __y1 = 0;
|
---|
769 | if (__r)
|
---|
770 | {
|
---|
771 | __y0 = __s0 * (__r / __s0);
|
---|
772 | if (__s1)
|
---|
773 | __y1 = __s1 * (__r / __s1);
|
---|
774 |
|
---|
775 | if (__r - __y0 <= __y0 / __n)
|
---|
776 | break;
|
---|
777 | }
|
---|
778 | else
|
---|
779 | break;
|
---|
780 | }
|
---|
781 |
|
---|
782 | result_type __sum = 0;
|
---|
783 | for (size_t __k = 0; __k < __n0; ++__k)
|
---|
784 | {
|
---|
785 | __ctype __u;
|
---|
786 | do
|
---|
787 | __u = _M_b() - _M_b.min();
|
---|
788 | while (__y0 && __u >= __y0);
|
---|
789 | __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u);
|
---|
790 | }
|
---|
791 | for (size_t __k = __n0; __k < __n; ++__k)
|
---|
792 | {
|
---|
793 | __ctype __u;
|
---|
794 | do
|
---|
795 | __u = _M_b() - _M_b.min();
|
---|
796 | while (__y1 && __u >= __y1);
|
---|
797 | __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u);
|
---|
798 | }
|
---|
799 | return __sum;
|
---|
800 | }
|
---|
801 |
|
---|
802 |
|
---|
803 | template<typename _RandomNumberEngine, size_t __k>
|
---|
804 | constexpr size_t
|
---|
805 | shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
|
---|
806 |
|
---|
807 | namespace __detail
|
---|
808 | {
|
---|
809 | // Determine whether an integer is representable as double.
|
---|
810 | template<typename _Tp>
|
---|
811 | constexpr bool
|
---|
812 | __representable_as_double(_Tp __x) noexcept
|
---|
813 | {
|
---|
814 | static_assert(numeric_limits<_Tp>::is_integer, "");
|
---|
815 | static_assert(!numeric_limits<_Tp>::is_signed, "");
|
---|
816 | // All integers <= 2^53 are representable.
|
---|
817 | return (__x <= (1ull << __DBL_MANT_DIG__))
|
---|
818 | // Between 2^53 and 2^54 only even numbers are representable.
|
---|
819 | || (!(__x & 1) && __detail::__representable_as_double(__x >> 1));
|
---|
820 | }
|
---|
821 |
|
---|
822 | // Determine whether x+1 is representable as double.
|
---|
823 | template<typename _Tp>
|
---|
824 | constexpr bool
|
---|
825 | __p1_representable_as_double(_Tp __x) noexcept
|
---|
826 | {
|
---|
827 | static_assert(numeric_limits<_Tp>::is_integer, "");
|
---|
828 | static_assert(!numeric_limits<_Tp>::is_signed, "");
|
---|
829 | return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__
|
---|
830 | || (bool(__x + 1u) // return false if x+1 wraps around to zero
|
---|
831 | && __detail::__representable_as_double(__x + 1u));
|
---|
832 | }
|
---|
833 | }
|
---|
834 |
|
---|
835 | template<typename _RandomNumberEngine, size_t __k>
|
---|
836 | typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
|
---|
837 | shuffle_order_engine<_RandomNumberEngine, __k>::
|
---|
838 | operator()()
|
---|
839 | {
|
---|
840 | constexpr result_type __range = max() - min();
|
---|
841 | size_t __j = __k;
|
---|
842 | const result_type __y = _M_y - min();
|
---|
843 | // Avoid using slower long double arithmetic if possible.
|
---|
844 | if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range))
|
---|
845 | __j *= __y / (__range + 1.0);
|
---|
846 | else
|
---|
847 | __j *= __y / (__range + 1.0L);
|
---|
848 | _M_y = _M_v[__j];
|
---|
849 | _M_v[__j] = _M_b();
|
---|
850 |
|
---|
851 | return _M_y;
|
---|
852 | }
|
---|
853 |
|
---|
854 | template<typename _RandomNumberEngine, size_t __k,
|
---|
855 | typename _CharT, typename _Traits>
|
---|
856 | std::basic_ostream<_CharT, _Traits>&
|
---|
857 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
858 | const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
|
---|
859 | {
|
---|
860 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
861 |
|
---|
862 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
863 | const _CharT __fill = __os.fill();
|
---|
864 | const _CharT __space = __os.widen(' ');
|
---|
865 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
|
---|
866 | __os.fill(__space);
|
---|
867 |
|
---|
868 | __os << __x.base();
|
---|
869 | for (size_t __i = 0; __i < __k; ++__i)
|
---|
870 | __os << __space << __x._M_v[__i];
|
---|
871 | __os << __space << __x._M_y;
|
---|
872 |
|
---|
873 | __os.flags(__flags);
|
---|
874 | __os.fill(__fill);
|
---|
875 | return __os;
|
---|
876 | }
|
---|
877 |
|
---|
878 | template<typename _RandomNumberEngine, size_t __k,
|
---|
879 | typename _CharT, typename _Traits>
|
---|
880 | std::basic_istream<_CharT, _Traits>&
|
---|
881 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
882 | shuffle_order_engine<_RandomNumberEngine, __k>& __x)
|
---|
883 | {
|
---|
884 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
885 |
|
---|
886 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
887 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
888 |
|
---|
889 | __is >> __x._M_b;
|
---|
890 | for (size_t __i = 0; __i < __k; ++__i)
|
---|
891 | __is >> __x._M_v[__i];
|
---|
892 | __is >> __x._M_y;
|
---|
893 |
|
---|
894 | __is.flags(__flags);
|
---|
895 | return __is;
|
---|
896 | }
|
---|
897 |
|
---|
898 |
|
---|
899 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
900 | std::basic_ostream<_CharT, _Traits>&
|
---|
901 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
902 | const uniform_int_distribution<_IntType>& __x)
|
---|
903 | {
|
---|
904 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
905 |
|
---|
906 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
907 | const _CharT __fill = __os.fill();
|
---|
908 | const _CharT __space = __os.widen(' ');
|
---|
909 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
910 | __os.fill(__space);
|
---|
911 |
|
---|
912 | __os << __x.a() << __space << __x.b();
|
---|
913 |
|
---|
914 | __os.flags(__flags);
|
---|
915 | __os.fill(__fill);
|
---|
916 | return __os;
|
---|
917 | }
|
---|
918 |
|
---|
919 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
920 | std::basic_istream<_CharT, _Traits>&
|
---|
921 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
922 | uniform_int_distribution<_IntType>& __x)
|
---|
923 | {
|
---|
924 | using param_type
|
---|
925 | = typename uniform_int_distribution<_IntType>::param_type;
|
---|
926 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
927 |
|
---|
928 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
929 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
930 |
|
---|
931 | _IntType __a, __b;
|
---|
932 | if (__is >> __a >> __b)
|
---|
933 | __x.param(param_type(__a, __b));
|
---|
934 |
|
---|
935 | __is.flags(__flags);
|
---|
936 | return __is;
|
---|
937 | }
|
---|
938 |
|
---|
939 |
|
---|
940 | template<typename _RealType>
|
---|
941 | template<typename _ForwardIterator,
|
---|
942 | typename _UniformRandomNumberGenerator>
|
---|
943 | void
|
---|
944 | uniform_real_distribution<_RealType>::
|
---|
945 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
946 | _UniformRandomNumberGenerator& __urng,
|
---|
947 | const param_type& __p)
|
---|
948 | {
|
---|
949 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
950 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
951 | __aurng(__urng);
|
---|
952 | auto __range = __p.b() - __p.a();
|
---|
953 | while (__f != __t)
|
---|
954 | *__f++ = __aurng() * __range + __p.a();
|
---|
955 | }
|
---|
956 |
|
---|
957 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
958 | std::basic_ostream<_CharT, _Traits>&
|
---|
959 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
960 | const uniform_real_distribution<_RealType>& __x)
|
---|
961 | {
|
---|
962 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
963 |
|
---|
964 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
965 | const _CharT __fill = __os.fill();
|
---|
966 | const std::streamsize __precision = __os.precision();
|
---|
967 | const _CharT __space = __os.widen(' ');
|
---|
968 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
969 | __os.fill(__space);
|
---|
970 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
971 |
|
---|
972 | __os << __x.a() << __space << __x.b();
|
---|
973 |
|
---|
974 | __os.flags(__flags);
|
---|
975 | __os.fill(__fill);
|
---|
976 | __os.precision(__precision);
|
---|
977 | return __os;
|
---|
978 | }
|
---|
979 |
|
---|
980 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
981 | std::basic_istream<_CharT, _Traits>&
|
---|
982 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
983 | uniform_real_distribution<_RealType>& __x)
|
---|
984 | {
|
---|
985 | using param_type
|
---|
986 | = typename uniform_real_distribution<_RealType>::param_type;
|
---|
987 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
988 |
|
---|
989 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
990 | __is.flags(__ios_base::skipws);
|
---|
991 |
|
---|
992 | _RealType __a, __b;
|
---|
993 | if (__is >> __a >> __b)
|
---|
994 | __x.param(param_type(__a, __b));
|
---|
995 |
|
---|
996 | __is.flags(__flags);
|
---|
997 | return __is;
|
---|
998 | }
|
---|
999 |
|
---|
1000 |
|
---|
1001 | template<typename _ForwardIterator,
|
---|
1002 | typename _UniformRandomNumberGenerator>
|
---|
1003 | void
|
---|
1004 | std::bernoulli_distribution::
|
---|
1005 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1006 | _UniformRandomNumberGenerator& __urng,
|
---|
1007 | const param_type& __p)
|
---|
1008 | {
|
---|
1009 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1010 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1011 | __aurng(__urng);
|
---|
1012 | auto __limit = __p.p() * (__aurng.max() - __aurng.min());
|
---|
1013 |
|
---|
1014 | while (__f != __t)
|
---|
1015 | *__f++ = (__aurng() - __aurng.min()) < __limit;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | template<typename _CharT, typename _Traits>
|
---|
1019 | std::basic_ostream<_CharT, _Traits>&
|
---|
1020 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1021 | const bernoulli_distribution& __x)
|
---|
1022 | {
|
---|
1023 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1024 |
|
---|
1025 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1026 | const _CharT __fill = __os.fill();
|
---|
1027 | const std::streamsize __precision = __os.precision();
|
---|
1028 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1029 | __os.fill(__os.widen(' '));
|
---|
1030 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
1031 |
|
---|
1032 | __os << __x.p();
|
---|
1033 |
|
---|
1034 | __os.flags(__flags);
|
---|
1035 | __os.fill(__fill);
|
---|
1036 | __os.precision(__precision);
|
---|
1037 | return __os;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 |
|
---|
1041 | template<typename _IntType>
|
---|
1042 | template<typename _UniformRandomNumberGenerator>
|
---|
1043 | typename geometric_distribution<_IntType>::result_type
|
---|
1044 | geometric_distribution<_IntType>::
|
---|
1045 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
1046 | const param_type& __param)
|
---|
1047 | {
|
---|
1048 | // About the epsilon thing see this thread:
|
---|
1049 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
|
---|
1050 | const double __naf =
|
---|
1051 | (1 - std::numeric_limits<double>::epsilon()) / 2;
|
---|
1052 | // The largest _RealType convertible to _IntType.
|
---|
1053 | const double __thr =
|
---|
1054 | std::numeric_limits<_IntType>::max() + __naf;
|
---|
1055 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1056 | __aurng(__urng);
|
---|
1057 |
|
---|
1058 | double __cand;
|
---|
1059 | do
|
---|
1060 | __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p);
|
---|
1061 | while (__cand >= __thr);
|
---|
1062 |
|
---|
1063 | return result_type(__cand + __naf);
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | template<typename _IntType>
|
---|
1067 | template<typename _ForwardIterator,
|
---|
1068 | typename _UniformRandomNumberGenerator>
|
---|
1069 | void
|
---|
1070 | geometric_distribution<_IntType>::
|
---|
1071 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1072 | _UniformRandomNumberGenerator& __urng,
|
---|
1073 | const param_type& __param)
|
---|
1074 | {
|
---|
1075 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1076 | // About the epsilon thing see this thread:
|
---|
1077 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
|
---|
1078 | const double __naf =
|
---|
1079 | (1 - std::numeric_limits<double>::epsilon()) / 2;
|
---|
1080 | // The largest _RealType convertible to _IntType.
|
---|
1081 | const double __thr =
|
---|
1082 | std::numeric_limits<_IntType>::max() + __naf;
|
---|
1083 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1084 | __aurng(__urng);
|
---|
1085 |
|
---|
1086 | while (__f != __t)
|
---|
1087 | {
|
---|
1088 | double __cand;
|
---|
1089 | do
|
---|
1090 | __cand = std::floor(std::log(1.0 - __aurng())
|
---|
1091 | / __param._M_log_1_p);
|
---|
1092 | while (__cand >= __thr);
|
---|
1093 |
|
---|
1094 | *__f++ = __cand + __naf;
|
---|
1095 | }
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | template<typename _IntType,
|
---|
1099 | typename _CharT, typename _Traits>
|
---|
1100 | std::basic_ostream<_CharT, _Traits>&
|
---|
1101 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1102 | const geometric_distribution<_IntType>& __x)
|
---|
1103 | {
|
---|
1104 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1105 |
|
---|
1106 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1107 | const _CharT __fill = __os.fill();
|
---|
1108 | const std::streamsize __precision = __os.precision();
|
---|
1109 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1110 | __os.fill(__os.widen(' '));
|
---|
1111 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
1112 |
|
---|
1113 | __os << __x.p();
|
---|
1114 |
|
---|
1115 | __os.flags(__flags);
|
---|
1116 | __os.fill(__fill);
|
---|
1117 | __os.precision(__precision);
|
---|
1118 | return __os;
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | template<typename _IntType,
|
---|
1122 | typename _CharT, typename _Traits>
|
---|
1123 | std::basic_istream<_CharT, _Traits>&
|
---|
1124 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1125 | geometric_distribution<_IntType>& __x)
|
---|
1126 | {
|
---|
1127 | using param_type = typename geometric_distribution<_IntType>::param_type;
|
---|
1128 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1129 |
|
---|
1130 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1131 | __is.flags(__ios_base::skipws);
|
---|
1132 |
|
---|
1133 | double __p;
|
---|
1134 | if (__is >> __p)
|
---|
1135 | __x.param(param_type(__p));
|
---|
1136 |
|
---|
1137 | __is.flags(__flags);
|
---|
1138 | return __is;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
|
---|
1142 | template<typename _IntType>
|
---|
1143 | template<typename _UniformRandomNumberGenerator>
|
---|
1144 | typename negative_binomial_distribution<_IntType>::result_type
|
---|
1145 | negative_binomial_distribution<_IntType>::
|
---|
1146 | operator()(_UniformRandomNumberGenerator& __urng)
|
---|
1147 | {
|
---|
1148 | const double __y = _M_gd(__urng);
|
---|
1149 |
|
---|
1150 | // XXX Is the constructor too slow?
|
---|
1151 | std::poisson_distribution<result_type> __poisson(__y);
|
---|
1152 | return __poisson(__urng);
|
---|
1153 | }
|
---|
1154 |
|
---|
1155 | template<typename _IntType>
|
---|
1156 | template<typename _UniformRandomNumberGenerator>
|
---|
1157 | typename negative_binomial_distribution<_IntType>::result_type
|
---|
1158 | negative_binomial_distribution<_IntType>::
|
---|
1159 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
1160 | const param_type& __p)
|
---|
1161 | {
|
---|
1162 | typedef typename std::gamma_distribution<double>::param_type
|
---|
1163 | param_type;
|
---|
1164 |
|
---|
1165 | const double __y =
|
---|
1166 | _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
|
---|
1167 |
|
---|
1168 | std::poisson_distribution<result_type> __poisson(__y);
|
---|
1169 | return __poisson(__urng);
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | template<typename _IntType>
|
---|
1173 | template<typename _ForwardIterator,
|
---|
1174 | typename _UniformRandomNumberGenerator>
|
---|
1175 | void
|
---|
1176 | negative_binomial_distribution<_IntType>::
|
---|
1177 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1178 | _UniformRandomNumberGenerator& __urng)
|
---|
1179 | {
|
---|
1180 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1181 | while (__f != __t)
|
---|
1182 | {
|
---|
1183 | const double __y = _M_gd(__urng);
|
---|
1184 |
|
---|
1185 | // XXX Is the constructor too slow?
|
---|
1186 | std::poisson_distribution<result_type> __poisson(__y);
|
---|
1187 | *__f++ = __poisson(__urng);
|
---|
1188 | }
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | template<typename _IntType>
|
---|
1192 | template<typename _ForwardIterator,
|
---|
1193 | typename _UniformRandomNumberGenerator>
|
---|
1194 | void
|
---|
1195 | negative_binomial_distribution<_IntType>::
|
---|
1196 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1197 | _UniformRandomNumberGenerator& __urng,
|
---|
1198 | const param_type& __p)
|
---|
1199 | {
|
---|
1200 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1201 | typename std::gamma_distribution<result_type>::param_type
|
---|
1202 | __p2(__p.k(), (1.0 - __p.p()) / __p.p());
|
---|
1203 |
|
---|
1204 | while (__f != __t)
|
---|
1205 | {
|
---|
1206 | const double __y = _M_gd(__urng, __p2);
|
---|
1207 |
|
---|
1208 | std::poisson_distribution<result_type> __poisson(__y);
|
---|
1209 | *__f++ = __poisson(__urng);
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
1214 | std::basic_ostream<_CharT, _Traits>&
|
---|
1215 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1216 | const negative_binomial_distribution<_IntType>& __x)
|
---|
1217 | {
|
---|
1218 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1219 |
|
---|
1220 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1221 | const _CharT __fill = __os.fill();
|
---|
1222 | const std::streamsize __precision = __os.precision();
|
---|
1223 | const _CharT __space = __os.widen(' ');
|
---|
1224 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1225 | __os.fill(__os.widen(' '));
|
---|
1226 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
1227 |
|
---|
1228 | __os << __x.k() << __space << __x.p()
|
---|
1229 | << __space << __x._M_gd;
|
---|
1230 |
|
---|
1231 | __os.flags(__flags);
|
---|
1232 | __os.fill(__fill);
|
---|
1233 | __os.precision(__precision);
|
---|
1234 | return __os;
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
1238 | std::basic_istream<_CharT, _Traits>&
|
---|
1239 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1240 | negative_binomial_distribution<_IntType>& __x)
|
---|
1241 | {
|
---|
1242 | using param_type
|
---|
1243 | = typename negative_binomial_distribution<_IntType>::param_type;
|
---|
1244 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1245 |
|
---|
1246 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1247 | __is.flags(__ios_base::skipws);
|
---|
1248 |
|
---|
1249 | _IntType __k;
|
---|
1250 | double __p;
|
---|
1251 | if (__is >> __k >> __p >> __x._M_gd)
|
---|
1252 | __x.param(param_type(__k, __p));
|
---|
1253 |
|
---|
1254 | __is.flags(__flags);
|
---|
1255 | return __is;
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 |
|
---|
1259 | template<typename _IntType>
|
---|
1260 | void
|
---|
1261 | poisson_distribution<_IntType>::param_type::
|
---|
1262 | _M_initialize()
|
---|
1263 | {
|
---|
1264 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1265 | if (_M_mean >= 12)
|
---|
1266 | {
|
---|
1267 | const double __m = std::floor(_M_mean);
|
---|
1268 | _M_lm_thr = std::log(_M_mean);
|
---|
1269 | _M_lfm = std::lgamma(__m + 1);
|
---|
1270 | _M_sm = std::sqrt(__m);
|
---|
1271 |
|
---|
1272 | const double __pi_4 = 0.7853981633974483096156608458198757L;
|
---|
1273 | const double __dx = std::sqrt(2 * __m * std::log(32 * __m
|
---|
1274 | / __pi_4));
|
---|
1275 | _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx)));
|
---|
1276 | const double __cx = 2 * __m + _M_d;
|
---|
1277 | _M_scx = std::sqrt(__cx / 2);
|
---|
1278 | _M_1cx = 1 / __cx;
|
---|
1279 |
|
---|
1280 | _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
|
---|
1281 | _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
|
---|
1282 | / _M_d;
|
---|
1283 | }
|
---|
1284 | else
|
---|
1285 | #endif
|
---|
1286 | _M_lm_thr = std::exp(-_M_mean);
|
---|
1287 | }
|
---|
1288 |
|
---|
1289 | /**
|
---|
1290 | * A rejection algorithm when mean >= 12 and a simple method based
|
---|
1291 | * upon the multiplication of uniform random variates otherwise.
|
---|
1292 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1293 | * is defined.
|
---|
1294 | *
|
---|
1295 | * Reference:
|
---|
1296 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
---|
1297 | * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
|
---|
1298 | */
|
---|
1299 | template<typename _IntType>
|
---|
1300 | template<typename _UniformRandomNumberGenerator>
|
---|
1301 | typename poisson_distribution<_IntType>::result_type
|
---|
1302 | poisson_distribution<_IntType>::
|
---|
1303 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
1304 | const param_type& __param)
|
---|
1305 | {
|
---|
1306 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1307 | __aurng(__urng);
|
---|
1308 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1309 | if (__param.mean() >= 12)
|
---|
1310 | {
|
---|
1311 | double __x;
|
---|
1312 |
|
---|
1313 | // See comments above...
|
---|
1314 | const double __naf =
|
---|
1315 | (1 - std::numeric_limits<double>::epsilon()) / 2;
|
---|
1316 | const double __thr =
|
---|
1317 | std::numeric_limits<_IntType>::max() + __naf;
|
---|
1318 |
|
---|
1319 | const double __m = std::floor(__param.mean());
|
---|
1320 | // sqrt(pi / 2)
|
---|
1321 | const double __spi_2 = 1.2533141373155002512078826424055226L;
|
---|
1322 | const double __c1 = __param._M_sm * __spi_2;
|
---|
1323 | const double __c2 = __param._M_c2b + __c1;
|
---|
1324 | const double __c3 = __c2 + 1;
|
---|
1325 | const double __c4 = __c3 + 1;
|
---|
1326 | // 1 / 78
|
---|
1327 | const double __178 = 0.0128205128205128205128205128205128L;
|
---|
1328 | // e^(1 / 78)
|
---|
1329 | const double __e178 = 1.0129030479320018583185514777512983L;
|
---|
1330 | const double __c5 = __c4 + __e178;
|
---|
1331 | const double __c = __param._M_cb + __c5;
|
---|
1332 | const double __2cx = 2 * (2 * __m + __param._M_d);
|
---|
1333 |
|
---|
1334 | bool __reject = true;
|
---|
1335 | do
|
---|
1336 | {
|
---|
1337 | const double __u = __c * __aurng();
|
---|
1338 | const double __e = -std::log(1.0 - __aurng());
|
---|
1339 |
|
---|
1340 | double __w = 0.0;
|
---|
1341 |
|
---|
1342 | if (__u <= __c1)
|
---|
1343 | {
|
---|
1344 | const double __n = _M_nd(__urng);
|
---|
1345 | const double __y = -std::abs(__n) * __param._M_sm - 1;
|
---|
1346 | __x = std::floor(__y);
|
---|
1347 | __w = -__n * __n / 2;
|
---|
1348 | if (__x < -__m)
|
---|
1349 | continue;
|
---|
1350 | }
|
---|
1351 | else if (__u <= __c2)
|
---|
1352 | {
|
---|
1353 | const double __n = _M_nd(__urng);
|
---|
1354 | const double __y = 1 + std::abs(__n) * __param._M_scx;
|
---|
1355 | __x = std::ceil(__y);
|
---|
1356 | __w = __y * (2 - __y) * __param._M_1cx;
|
---|
1357 | if (__x > __param._M_d)
|
---|
1358 | continue;
|
---|
1359 | }
|
---|
1360 | else if (__u <= __c3)
|
---|
1361 | // NB: This case not in the book, nor in the Errata,
|
---|
1362 | // but should be ok...
|
---|
1363 | __x = -1;
|
---|
1364 | else if (__u <= __c4)
|
---|
1365 | __x = 0;
|
---|
1366 | else if (__u <= __c5)
|
---|
1367 | {
|
---|
1368 | __x = 1;
|
---|
1369 | // Only in the Errata, see libstdc++/83237.
|
---|
1370 | __w = __178;
|
---|
1371 | }
|
---|
1372 | else
|
---|
1373 | {
|
---|
1374 | const double __v = -std::log(1.0 - __aurng());
|
---|
1375 | const double __y = __param._M_d
|
---|
1376 | + __v * __2cx / __param._M_d;
|
---|
1377 | __x = std::ceil(__y);
|
---|
1378 | __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
|
---|
1379 | }
|
---|
1380 |
|
---|
1381 | __reject = (__w - __e - __x * __param._M_lm_thr
|
---|
1382 | > __param._M_lfm - std::lgamma(__x + __m + 1));
|
---|
1383 |
|
---|
1384 | __reject |= __x + __m >= __thr;
|
---|
1385 |
|
---|
1386 | } while (__reject);
|
---|
1387 |
|
---|
1388 | return result_type(__x + __m + __naf);
|
---|
1389 | }
|
---|
1390 | else
|
---|
1391 | #endif
|
---|
1392 | {
|
---|
1393 | _IntType __x = 0;
|
---|
1394 | double __prod = 1.0;
|
---|
1395 |
|
---|
1396 | do
|
---|
1397 | {
|
---|
1398 | __prod *= __aurng();
|
---|
1399 | __x += 1;
|
---|
1400 | }
|
---|
1401 | while (__prod > __param._M_lm_thr);
|
---|
1402 |
|
---|
1403 | return __x - 1;
|
---|
1404 | }
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | template<typename _IntType>
|
---|
1408 | template<typename _ForwardIterator,
|
---|
1409 | typename _UniformRandomNumberGenerator>
|
---|
1410 | void
|
---|
1411 | poisson_distribution<_IntType>::
|
---|
1412 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1413 | _UniformRandomNumberGenerator& __urng,
|
---|
1414 | const param_type& __param)
|
---|
1415 | {
|
---|
1416 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1417 | // We could duplicate everything from operator()...
|
---|
1418 | while (__f != __t)
|
---|
1419 | *__f++ = this->operator()(__urng, __param);
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | template<typename _IntType,
|
---|
1423 | typename _CharT, typename _Traits>
|
---|
1424 | std::basic_ostream<_CharT, _Traits>&
|
---|
1425 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1426 | const poisson_distribution<_IntType>& __x)
|
---|
1427 | {
|
---|
1428 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1429 |
|
---|
1430 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1431 | const _CharT __fill = __os.fill();
|
---|
1432 | const std::streamsize __precision = __os.precision();
|
---|
1433 | const _CharT __space = __os.widen(' ');
|
---|
1434 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1435 | __os.fill(__space);
|
---|
1436 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
1437 |
|
---|
1438 | __os << __x.mean() << __space << __x._M_nd;
|
---|
1439 |
|
---|
1440 | __os.flags(__flags);
|
---|
1441 | __os.fill(__fill);
|
---|
1442 | __os.precision(__precision);
|
---|
1443 | return __os;
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | template<typename _IntType,
|
---|
1447 | typename _CharT, typename _Traits>
|
---|
1448 | std::basic_istream<_CharT, _Traits>&
|
---|
1449 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1450 | poisson_distribution<_IntType>& __x)
|
---|
1451 | {
|
---|
1452 | using param_type = typename poisson_distribution<_IntType>::param_type;
|
---|
1453 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1454 |
|
---|
1455 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1456 | __is.flags(__ios_base::skipws);
|
---|
1457 |
|
---|
1458 | double __mean;
|
---|
1459 | if (__is >> __mean >> __x._M_nd)
|
---|
1460 | __x.param(param_type(__mean));
|
---|
1461 |
|
---|
1462 | __is.flags(__flags);
|
---|
1463 | return __is;
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 |
|
---|
1467 | template<typename _IntType>
|
---|
1468 | void
|
---|
1469 | binomial_distribution<_IntType>::param_type::
|
---|
1470 | _M_initialize()
|
---|
1471 | {
|
---|
1472 | const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
|
---|
1473 |
|
---|
1474 | _M_easy = true;
|
---|
1475 |
|
---|
1476 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1477 | if (_M_t * __p12 >= 8)
|
---|
1478 | {
|
---|
1479 | _M_easy = false;
|
---|
1480 | const double __np = std::floor(_M_t * __p12);
|
---|
1481 | const double __pa = __np / _M_t;
|
---|
1482 | const double __1p = 1 - __pa;
|
---|
1483 |
|
---|
1484 | const double __pi_4 = 0.7853981633974483096156608458198757L;
|
---|
1485 | const double __d1x =
|
---|
1486 | std::sqrt(__np * __1p * std::log(32 * __np
|
---|
1487 | / (81 * __pi_4 * __1p)));
|
---|
1488 | _M_d1 = std::round(std::max<double>(1.0, __d1x));
|
---|
1489 | const double __d2x =
|
---|
1490 | std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
|
---|
1491 | / (__pi_4 * __pa)));
|
---|
1492 | _M_d2 = std::round(std::max<double>(1.0, __d2x));
|
---|
1493 |
|
---|
1494 | // sqrt(pi / 2)
|
---|
1495 | const double __spi_2 = 1.2533141373155002512078826424055226L;
|
---|
1496 | _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
|
---|
1497 | _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
|
---|
1498 | _M_c = 2 * _M_d1 / __np;
|
---|
1499 | _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
|
---|
1500 | const double __a12 = _M_a1 + _M_s2 * __spi_2;
|
---|
1501 | const double __s1s = _M_s1 * _M_s1;
|
---|
1502 | _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
|
---|
1503 | * 2 * __s1s / _M_d1
|
---|
1504 | * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
|
---|
1505 | const double __s2s = _M_s2 * _M_s2;
|
---|
1506 | _M_s = (_M_a123 + 2 * __s2s / _M_d2
|
---|
1507 | * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
|
---|
1508 | _M_lf = (std::lgamma(__np + 1)
|
---|
1509 | + std::lgamma(_M_t - __np + 1));
|
---|
1510 | _M_lp1p = std::log(__pa / __1p);
|
---|
1511 |
|
---|
1512 | _M_q = -std::log(1 - (__p12 - __pa) / __1p);
|
---|
1513 | }
|
---|
1514 | else
|
---|
1515 | #endif
|
---|
1516 | _M_q = -std::log(1 - __p12);
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | template<typename _IntType>
|
---|
1520 | template<typename _UniformRandomNumberGenerator>
|
---|
1521 | typename binomial_distribution<_IntType>::result_type
|
---|
1522 | binomial_distribution<_IntType>::
|
---|
1523 | _M_waiting(_UniformRandomNumberGenerator& __urng,
|
---|
1524 | _IntType __t, double __q)
|
---|
1525 | {
|
---|
1526 | _IntType __x = 0;
|
---|
1527 | double __sum = 0.0;
|
---|
1528 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1529 | __aurng(__urng);
|
---|
1530 |
|
---|
1531 | do
|
---|
1532 | {
|
---|
1533 | if (__t == __x)
|
---|
1534 | return __x;
|
---|
1535 | const double __e = -std::log(1.0 - __aurng());
|
---|
1536 | __sum += __e / (__t - __x);
|
---|
1537 | __x += 1;
|
---|
1538 | }
|
---|
1539 | while (__sum <= __q);
|
---|
1540 |
|
---|
1541 | return __x - 1;
|
---|
1542 | }
|
---|
1543 |
|
---|
1544 | /**
|
---|
1545 | * A rejection algorithm when t * p >= 8 and a simple waiting time
|
---|
1546 | * method - the second in the referenced book - otherwise.
|
---|
1547 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1548 | * is defined.
|
---|
1549 | *
|
---|
1550 | * Reference:
|
---|
1551 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
---|
1552 | * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
|
---|
1553 | */
|
---|
1554 | template<typename _IntType>
|
---|
1555 | template<typename _UniformRandomNumberGenerator>
|
---|
1556 | typename binomial_distribution<_IntType>::result_type
|
---|
1557 | binomial_distribution<_IntType>::
|
---|
1558 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
1559 | const param_type& __param)
|
---|
1560 | {
|
---|
1561 | result_type __ret;
|
---|
1562 | const _IntType __t = __param.t();
|
---|
1563 | const double __p = __param.p();
|
---|
1564 | const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
|
---|
1565 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
1566 | __aurng(__urng);
|
---|
1567 |
|
---|
1568 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
1569 | if (!__param._M_easy)
|
---|
1570 | {
|
---|
1571 | double __x;
|
---|
1572 |
|
---|
1573 | // See comments above...
|
---|
1574 | const double __naf =
|
---|
1575 | (1 - std::numeric_limits<double>::epsilon()) / 2;
|
---|
1576 | const double __thr =
|
---|
1577 | std::numeric_limits<_IntType>::max() + __naf;
|
---|
1578 |
|
---|
1579 | const double __np = std::floor(__t * __p12);
|
---|
1580 |
|
---|
1581 | // sqrt(pi / 2)
|
---|
1582 | const double __spi_2 = 1.2533141373155002512078826424055226L;
|
---|
1583 | const double __a1 = __param._M_a1;
|
---|
1584 | const double __a12 = __a1 + __param._M_s2 * __spi_2;
|
---|
1585 | const double __a123 = __param._M_a123;
|
---|
1586 | const double __s1s = __param._M_s1 * __param._M_s1;
|
---|
1587 | const double __s2s = __param._M_s2 * __param._M_s2;
|
---|
1588 |
|
---|
1589 | bool __reject;
|
---|
1590 | do
|
---|
1591 | {
|
---|
1592 | const double __u = __param._M_s * __aurng();
|
---|
1593 |
|
---|
1594 | double __v;
|
---|
1595 |
|
---|
1596 | if (__u <= __a1)
|
---|
1597 | {
|
---|
1598 | const double __n = _M_nd(__urng);
|
---|
1599 | const double __y = __param._M_s1 * std::abs(__n);
|
---|
1600 | __reject = __y >= __param._M_d1;
|
---|
1601 | if (!__reject)
|
---|
1602 | {
|
---|
1603 | const double __e = -std::log(1.0 - __aurng());
|
---|
1604 | __x = std::floor(__y);
|
---|
1605 | __v = -__e - __n * __n / 2 + __param._M_c;
|
---|
1606 | }
|
---|
1607 | }
|
---|
1608 | else if (__u <= __a12)
|
---|
1609 | {
|
---|
1610 | const double __n = _M_nd(__urng);
|
---|
1611 | const double __y = __param._M_s2 * std::abs(__n);
|
---|
1612 | __reject = __y >= __param._M_d2;
|
---|
1613 | if (!__reject)
|
---|
1614 | {
|
---|
1615 | const double __e = -std::log(1.0 - __aurng());
|
---|
1616 | __x = std::floor(-__y);
|
---|
1617 | __v = -__e - __n * __n / 2;
|
---|
1618 | }
|
---|
1619 | }
|
---|
1620 | else if (__u <= __a123)
|
---|
1621 | {
|
---|
1622 | const double __e1 = -std::log(1.0 - __aurng());
|
---|
1623 | const double __e2 = -std::log(1.0 - __aurng());
|
---|
1624 |
|
---|
1625 | const double __y = __param._M_d1
|
---|
1626 | + 2 * __s1s * __e1 / __param._M_d1;
|
---|
1627 | __x = std::floor(__y);
|
---|
1628 | __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
|
---|
1629 | -__y / (2 * __s1s)));
|
---|
1630 | __reject = false;
|
---|
1631 | }
|
---|
1632 | else
|
---|
1633 | {
|
---|
1634 | const double __e1 = -std::log(1.0 - __aurng());
|
---|
1635 | const double __e2 = -std::log(1.0 - __aurng());
|
---|
1636 |
|
---|
1637 | const double __y = __param._M_d2
|
---|
1638 | + 2 * __s2s * __e1 / __param._M_d2;
|
---|
1639 | __x = std::floor(-__y);
|
---|
1640 | __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
|
---|
1641 | __reject = false;
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 | __reject = __reject || __x < -__np || __x > __t - __np;
|
---|
1645 | if (!__reject)
|
---|
1646 | {
|
---|
1647 | const double __lfx =
|
---|
1648 | std::lgamma(__np + __x + 1)
|
---|
1649 | + std::lgamma(__t - (__np + __x) + 1);
|
---|
1650 | __reject = __v > __param._M_lf - __lfx
|
---|
1651 | + __x * __param._M_lp1p;
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | __reject |= __x + __np >= __thr;
|
---|
1655 | }
|
---|
1656 | while (__reject);
|
---|
1657 |
|
---|
1658 | __x += __np + __naf;
|
---|
1659 |
|
---|
1660 | const _IntType __z = _M_waiting(__urng, __t - _IntType(__x),
|
---|
1661 | __param._M_q);
|
---|
1662 | __ret = _IntType(__x) + __z;
|
---|
1663 | }
|
---|
1664 | else
|
---|
1665 | #endif
|
---|
1666 | __ret = _M_waiting(__urng, __t, __param._M_q);
|
---|
1667 |
|
---|
1668 | if (__p12 != __p)
|
---|
1669 | __ret = __t - __ret;
|
---|
1670 | return __ret;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | template<typename _IntType>
|
---|
1674 | template<typename _ForwardIterator,
|
---|
1675 | typename _UniformRandomNumberGenerator>
|
---|
1676 | void
|
---|
1677 | binomial_distribution<_IntType>::
|
---|
1678 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1679 | _UniformRandomNumberGenerator& __urng,
|
---|
1680 | const param_type& __param)
|
---|
1681 | {
|
---|
1682 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1683 | // We could duplicate everything from operator()...
|
---|
1684 | while (__f != __t)
|
---|
1685 | *__f++ = this->operator()(__urng, __param);
|
---|
1686 | }
|
---|
1687 |
|
---|
1688 | template<typename _IntType,
|
---|
1689 | typename _CharT, typename _Traits>
|
---|
1690 | std::basic_ostream<_CharT, _Traits>&
|
---|
1691 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1692 | const binomial_distribution<_IntType>& __x)
|
---|
1693 | {
|
---|
1694 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1695 |
|
---|
1696 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1697 | const _CharT __fill = __os.fill();
|
---|
1698 | const std::streamsize __precision = __os.precision();
|
---|
1699 | const _CharT __space = __os.widen(' ');
|
---|
1700 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1701 | __os.fill(__space);
|
---|
1702 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
1703 |
|
---|
1704 | __os << __x.t() << __space << __x.p()
|
---|
1705 | << __space << __x._M_nd;
|
---|
1706 |
|
---|
1707 | __os.flags(__flags);
|
---|
1708 | __os.fill(__fill);
|
---|
1709 | __os.precision(__precision);
|
---|
1710 | return __os;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | template<typename _IntType,
|
---|
1714 | typename _CharT, typename _Traits>
|
---|
1715 | std::basic_istream<_CharT, _Traits>&
|
---|
1716 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1717 | binomial_distribution<_IntType>& __x)
|
---|
1718 | {
|
---|
1719 | using param_type = typename binomial_distribution<_IntType>::param_type;
|
---|
1720 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1721 |
|
---|
1722 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1723 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
1724 |
|
---|
1725 | _IntType __t;
|
---|
1726 | double __p;
|
---|
1727 | if (__is >> __t >> __p >> __x._M_nd)
|
---|
1728 | __x.param(param_type(__t, __p));
|
---|
1729 |
|
---|
1730 | __is.flags(__flags);
|
---|
1731 | return __is;
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 |
|
---|
1735 | template<typename _RealType>
|
---|
1736 | template<typename _ForwardIterator,
|
---|
1737 | typename _UniformRandomNumberGenerator>
|
---|
1738 | void
|
---|
1739 | std::exponential_distribution<_RealType>::
|
---|
1740 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1741 | _UniformRandomNumberGenerator& __urng,
|
---|
1742 | const param_type& __p)
|
---|
1743 | {
|
---|
1744 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1745 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
1746 | __aurng(__urng);
|
---|
1747 | while (__f != __t)
|
---|
1748 | *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda();
|
---|
1749 | }
|
---|
1750 |
|
---|
1751 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
1752 | std::basic_ostream<_CharT, _Traits>&
|
---|
1753 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1754 | const exponential_distribution<_RealType>& __x)
|
---|
1755 | {
|
---|
1756 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1757 |
|
---|
1758 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1759 | const _CharT __fill = __os.fill();
|
---|
1760 | const std::streamsize __precision = __os.precision();
|
---|
1761 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1762 | __os.fill(__os.widen(' '));
|
---|
1763 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
1764 |
|
---|
1765 | __os << __x.lambda();
|
---|
1766 |
|
---|
1767 | __os.flags(__flags);
|
---|
1768 | __os.fill(__fill);
|
---|
1769 | __os.precision(__precision);
|
---|
1770 | return __os;
|
---|
1771 | }
|
---|
1772 |
|
---|
1773 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
1774 | std::basic_istream<_CharT, _Traits>&
|
---|
1775 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1776 | exponential_distribution<_RealType>& __x)
|
---|
1777 | {
|
---|
1778 | using param_type
|
---|
1779 | = typename exponential_distribution<_RealType>::param_type;
|
---|
1780 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1781 |
|
---|
1782 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1783 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
1784 |
|
---|
1785 | _RealType __lambda;
|
---|
1786 | if (__is >> __lambda)
|
---|
1787 | __x.param(param_type(__lambda));
|
---|
1788 |
|
---|
1789 | __is.flags(__flags);
|
---|
1790 | return __is;
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 |
|
---|
1794 | /**
|
---|
1795 | * Polar method due to Marsaglia.
|
---|
1796 | *
|
---|
1797 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
|
---|
1798 | * New York, 1986, Ch. V, Sect. 4.4.
|
---|
1799 | */
|
---|
1800 | template<typename _RealType>
|
---|
1801 | template<typename _UniformRandomNumberGenerator>
|
---|
1802 | typename normal_distribution<_RealType>::result_type
|
---|
1803 | normal_distribution<_RealType>::
|
---|
1804 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
1805 | const param_type& __param)
|
---|
1806 | {
|
---|
1807 | result_type __ret;
|
---|
1808 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
1809 | __aurng(__urng);
|
---|
1810 |
|
---|
1811 | if (_M_saved_available)
|
---|
1812 | {
|
---|
1813 | _M_saved_available = false;
|
---|
1814 | __ret = _M_saved;
|
---|
1815 | }
|
---|
1816 | else
|
---|
1817 | {
|
---|
1818 | result_type __x, __y, __r2;
|
---|
1819 | do
|
---|
1820 | {
|
---|
1821 | __x = result_type(2.0) * __aurng() - 1.0;
|
---|
1822 | __y = result_type(2.0) * __aurng() - 1.0;
|
---|
1823 | __r2 = __x * __x + __y * __y;
|
---|
1824 | }
|
---|
1825 | while (__r2 > 1.0 || __r2 == 0.0);
|
---|
1826 |
|
---|
1827 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
|
---|
1828 | _M_saved = __x * __mult;
|
---|
1829 | _M_saved_available = true;
|
---|
1830 | __ret = __y * __mult;
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 | __ret = __ret * __param.stddev() + __param.mean();
|
---|
1834 | return __ret;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 | template<typename _RealType>
|
---|
1838 | template<typename _ForwardIterator,
|
---|
1839 | typename _UniformRandomNumberGenerator>
|
---|
1840 | void
|
---|
1841 | normal_distribution<_RealType>::
|
---|
1842 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1843 | _UniformRandomNumberGenerator& __urng,
|
---|
1844 | const param_type& __param)
|
---|
1845 | {
|
---|
1846 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1847 |
|
---|
1848 | if (__f == __t)
|
---|
1849 | return;
|
---|
1850 |
|
---|
1851 | if (_M_saved_available)
|
---|
1852 | {
|
---|
1853 | _M_saved_available = false;
|
---|
1854 | *__f++ = _M_saved * __param.stddev() + __param.mean();
|
---|
1855 |
|
---|
1856 | if (__f == __t)
|
---|
1857 | return;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
1861 | __aurng(__urng);
|
---|
1862 |
|
---|
1863 | while (__f + 1 < __t)
|
---|
1864 | {
|
---|
1865 | result_type __x, __y, __r2;
|
---|
1866 | do
|
---|
1867 | {
|
---|
1868 | __x = result_type(2.0) * __aurng() - 1.0;
|
---|
1869 | __y = result_type(2.0) * __aurng() - 1.0;
|
---|
1870 | __r2 = __x * __x + __y * __y;
|
---|
1871 | }
|
---|
1872 | while (__r2 > 1.0 || __r2 == 0.0);
|
---|
1873 |
|
---|
1874 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
|
---|
1875 | *__f++ = __y * __mult * __param.stddev() + __param.mean();
|
---|
1876 | *__f++ = __x * __mult * __param.stddev() + __param.mean();
|
---|
1877 | }
|
---|
1878 |
|
---|
1879 | if (__f != __t)
|
---|
1880 | {
|
---|
1881 | result_type __x, __y, __r2;
|
---|
1882 | do
|
---|
1883 | {
|
---|
1884 | __x = result_type(2.0) * __aurng() - 1.0;
|
---|
1885 | __y = result_type(2.0) * __aurng() - 1.0;
|
---|
1886 | __r2 = __x * __x + __y * __y;
|
---|
1887 | }
|
---|
1888 | while (__r2 > 1.0 || __r2 == 0.0);
|
---|
1889 |
|
---|
1890 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
|
---|
1891 | _M_saved = __x * __mult;
|
---|
1892 | _M_saved_available = true;
|
---|
1893 | *__f = __y * __mult * __param.stddev() + __param.mean();
|
---|
1894 | }
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 | template<typename _RealType>
|
---|
1898 | bool
|
---|
1899 | operator==(const std::normal_distribution<_RealType>& __d1,
|
---|
1900 | const std::normal_distribution<_RealType>& __d2)
|
---|
1901 | {
|
---|
1902 | if (__d1._M_param == __d2._M_param
|
---|
1903 | && __d1._M_saved_available == __d2._M_saved_available)
|
---|
1904 | {
|
---|
1905 | if (__d1._M_saved_available
|
---|
1906 | && __d1._M_saved == __d2._M_saved)
|
---|
1907 | return true;
|
---|
1908 | else if(!__d1._M_saved_available)
|
---|
1909 | return true;
|
---|
1910 | else
|
---|
1911 | return false;
|
---|
1912 | }
|
---|
1913 | else
|
---|
1914 | return false;
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
1918 | std::basic_ostream<_CharT, _Traits>&
|
---|
1919 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1920 | const normal_distribution<_RealType>& __x)
|
---|
1921 | {
|
---|
1922 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1923 |
|
---|
1924 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1925 | const _CharT __fill = __os.fill();
|
---|
1926 | const std::streamsize __precision = __os.precision();
|
---|
1927 | const _CharT __space = __os.widen(' ');
|
---|
1928 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1929 | __os.fill(__space);
|
---|
1930 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
1931 |
|
---|
1932 | __os << __x.mean() << __space << __x.stddev()
|
---|
1933 | << __space << __x._M_saved_available;
|
---|
1934 | if (__x._M_saved_available)
|
---|
1935 | __os << __space << __x._M_saved;
|
---|
1936 |
|
---|
1937 | __os.flags(__flags);
|
---|
1938 | __os.fill(__fill);
|
---|
1939 | __os.precision(__precision);
|
---|
1940 | return __os;
|
---|
1941 | }
|
---|
1942 |
|
---|
1943 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
1944 | std::basic_istream<_CharT, _Traits>&
|
---|
1945 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
1946 | normal_distribution<_RealType>& __x)
|
---|
1947 | {
|
---|
1948 | using param_type = typename normal_distribution<_RealType>::param_type;
|
---|
1949 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
1950 |
|
---|
1951 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
1952 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
1953 |
|
---|
1954 | double __mean, __stddev;
|
---|
1955 | bool __saved_avail;
|
---|
1956 | if (__is >> __mean >> __stddev >> __saved_avail)
|
---|
1957 | {
|
---|
1958 | if (__saved_avail && (__is >> __x._M_saved))
|
---|
1959 | {
|
---|
1960 | __x._M_saved_available = __saved_avail;
|
---|
1961 | __x.param(param_type(__mean, __stddev));
|
---|
1962 | }
|
---|
1963 | }
|
---|
1964 |
|
---|
1965 | __is.flags(__flags);
|
---|
1966 | return __is;
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 |
|
---|
1970 | template<typename _RealType>
|
---|
1971 | template<typename _ForwardIterator,
|
---|
1972 | typename _UniformRandomNumberGenerator>
|
---|
1973 | void
|
---|
1974 | lognormal_distribution<_RealType>::
|
---|
1975 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
1976 | _UniformRandomNumberGenerator& __urng,
|
---|
1977 | const param_type& __p)
|
---|
1978 | {
|
---|
1979 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
1980 | while (__f != __t)
|
---|
1981 | *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m());
|
---|
1982 | }
|
---|
1983 |
|
---|
1984 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
1985 | std::basic_ostream<_CharT, _Traits>&
|
---|
1986 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
1987 | const lognormal_distribution<_RealType>& __x)
|
---|
1988 | {
|
---|
1989 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
1990 |
|
---|
1991 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
1992 | const _CharT __fill = __os.fill();
|
---|
1993 | const std::streamsize __precision = __os.precision();
|
---|
1994 | const _CharT __space = __os.widen(' ');
|
---|
1995 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
1996 | __os.fill(__space);
|
---|
1997 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
1998 |
|
---|
1999 | __os << __x.m() << __space << __x.s()
|
---|
2000 | << __space << __x._M_nd;
|
---|
2001 |
|
---|
2002 | __os.flags(__flags);
|
---|
2003 | __os.fill(__fill);
|
---|
2004 | __os.precision(__precision);
|
---|
2005 | return __os;
|
---|
2006 | }
|
---|
2007 |
|
---|
2008 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2009 | std::basic_istream<_CharT, _Traits>&
|
---|
2010 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2011 | lognormal_distribution<_RealType>& __x)
|
---|
2012 | {
|
---|
2013 | using param_type
|
---|
2014 | = typename lognormal_distribution<_RealType>::param_type;
|
---|
2015 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2016 |
|
---|
2017 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2018 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2019 |
|
---|
2020 | _RealType __m, __s;
|
---|
2021 | if (__is >> __m >> __s >> __x._M_nd)
|
---|
2022 | __x.param(param_type(__m, __s));
|
---|
2023 |
|
---|
2024 | __is.flags(__flags);
|
---|
2025 | return __is;
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 | template<typename _RealType>
|
---|
2029 | template<typename _ForwardIterator,
|
---|
2030 | typename _UniformRandomNumberGenerator>
|
---|
2031 | void
|
---|
2032 | std::chi_squared_distribution<_RealType>::
|
---|
2033 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2034 | _UniformRandomNumberGenerator& __urng)
|
---|
2035 | {
|
---|
2036 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2037 | while (__f != __t)
|
---|
2038 | *__f++ = 2 * _M_gd(__urng);
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | template<typename _RealType>
|
---|
2042 | template<typename _ForwardIterator,
|
---|
2043 | typename _UniformRandomNumberGenerator>
|
---|
2044 | void
|
---|
2045 | std::chi_squared_distribution<_RealType>::
|
---|
2046 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2047 | _UniformRandomNumberGenerator& __urng,
|
---|
2048 | const typename
|
---|
2049 | std::gamma_distribution<result_type>::param_type& __p)
|
---|
2050 | {
|
---|
2051 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2052 | while (__f != __t)
|
---|
2053 | *__f++ = 2 * _M_gd(__urng, __p);
|
---|
2054 | }
|
---|
2055 |
|
---|
2056 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2057 | std::basic_ostream<_CharT, _Traits>&
|
---|
2058 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2059 | const chi_squared_distribution<_RealType>& __x)
|
---|
2060 | {
|
---|
2061 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2062 |
|
---|
2063 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2064 | const _CharT __fill = __os.fill();
|
---|
2065 | const std::streamsize __precision = __os.precision();
|
---|
2066 | const _CharT __space = __os.widen(' ');
|
---|
2067 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2068 | __os.fill(__space);
|
---|
2069 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2070 |
|
---|
2071 | __os << __x.n() << __space << __x._M_gd;
|
---|
2072 |
|
---|
2073 | __os.flags(__flags);
|
---|
2074 | __os.fill(__fill);
|
---|
2075 | __os.precision(__precision);
|
---|
2076 | return __os;
|
---|
2077 | }
|
---|
2078 |
|
---|
2079 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2080 | std::basic_istream<_CharT, _Traits>&
|
---|
2081 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2082 | chi_squared_distribution<_RealType>& __x)
|
---|
2083 | {
|
---|
2084 | using param_type
|
---|
2085 | = typename chi_squared_distribution<_RealType>::param_type;
|
---|
2086 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2087 |
|
---|
2088 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2089 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2090 |
|
---|
2091 | _RealType __n;
|
---|
2092 | if (__is >> __n >> __x._M_gd)
|
---|
2093 | __x.param(param_type(__n));
|
---|
2094 |
|
---|
2095 | __is.flags(__flags);
|
---|
2096 | return __is;
|
---|
2097 | }
|
---|
2098 |
|
---|
2099 |
|
---|
2100 | template<typename _RealType>
|
---|
2101 | template<typename _UniformRandomNumberGenerator>
|
---|
2102 | typename cauchy_distribution<_RealType>::result_type
|
---|
2103 | cauchy_distribution<_RealType>::
|
---|
2104 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2105 | const param_type& __p)
|
---|
2106 | {
|
---|
2107 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2108 | __aurng(__urng);
|
---|
2109 | _RealType __u;
|
---|
2110 | do
|
---|
2111 | __u = __aurng();
|
---|
2112 | while (__u == 0.5);
|
---|
2113 |
|
---|
2114 | const _RealType __pi = 3.1415926535897932384626433832795029L;
|
---|
2115 | return __p.a() + __p.b() * std::tan(__pi * __u);
|
---|
2116 | }
|
---|
2117 |
|
---|
2118 | template<typename _RealType>
|
---|
2119 | template<typename _ForwardIterator,
|
---|
2120 | typename _UniformRandomNumberGenerator>
|
---|
2121 | void
|
---|
2122 | cauchy_distribution<_RealType>::
|
---|
2123 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2124 | _UniformRandomNumberGenerator& __urng,
|
---|
2125 | const param_type& __p)
|
---|
2126 | {
|
---|
2127 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2128 | const _RealType __pi = 3.1415926535897932384626433832795029L;
|
---|
2129 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2130 | __aurng(__urng);
|
---|
2131 | while (__f != __t)
|
---|
2132 | {
|
---|
2133 | _RealType __u;
|
---|
2134 | do
|
---|
2135 | __u = __aurng();
|
---|
2136 | while (__u == 0.5);
|
---|
2137 |
|
---|
2138 | *__f++ = __p.a() + __p.b() * std::tan(__pi * __u);
|
---|
2139 | }
|
---|
2140 | }
|
---|
2141 |
|
---|
2142 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2143 | std::basic_ostream<_CharT, _Traits>&
|
---|
2144 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2145 | const cauchy_distribution<_RealType>& __x)
|
---|
2146 | {
|
---|
2147 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2148 |
|
---|
2149 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2150 | const _CharT __fill = __os.fill();
|
---|
2151 | const std::streamsize __precision = __os.precision();
|
---|
2152 | const _CharT __space = __os.widen(' ');
|
---|
2153 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2154 | __os.fill(__space);
|
---|
2155 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2156 |
|
---|
2157 | __os << __x.a() << __space << __x.b();
|
---|
2158 |
|
---|
2159 | __os.flags(__flags);
|
---|
2160 | __os.fill(__fill);
|
---|
2161 | __os.precision(__precision);
|
---|
2162 | return __os;
|
---|
2163 | }
|
---|
2164 |
|
---|
2165 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2166 | std::basic_istream<_CharT, _Traits>&
|
---|
2167 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2168 | cauchy_distribution<_RealType>& __x)
|
---|
2169 | {
|
---|
2170 | using param_type = typename cauchy_distribution<_RealType>::param_type;
|
---|
2171 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2172 |
|
---|
2173 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2174 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2175 |
|
---|
2176 | _RealType __a, __b;
|
---|
2177 | if (__is >> __a >> __b)
|
---|
2178 | __x.param(param_type(__a, __b));
|
---|
2179 |
|
---|
2180 | __is.flags(__flags);
|
---|
2181 | return __is;
|
---|
2182 | }
|
---|
2183 |
|
---|
2184 |
|
---|
2185 | template<typename _RealType>
|
---|
2186 | template<typename _ForwardIterator,
|
---|
2187 | typename _UniformRandomNumberGenerator>
|
---|
2188 | void
|
---|
2189 | std::fisher_f_distribution<_RealType>::
|
---|
2190 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2191 | _UniformRandomNumberGenerator& __urng)
|
---|
2192 | {
|
---|
2193 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2194 | while (__f != __t)
|
---|
2195 | *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()));
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 | template<typename _RealType>
|
---|
2199 | template<typename _ForwardIterator,
|
---|
2200 | typename _UniformRandomNumberGenerator>
|
---|
2201 | void
|
---|
2202 | std::fisher_f_distribution<_RealType>::
|
---|
2203 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2204 | _UniformRandomNumberGenerator& __urng,
|
---|
2205 | const param_type& __p)
|
---|
2206 | {
|
---|
2207 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2208 | typedef typename std::gamma_distribution<result_type>::param_type
|
---|
2209 | param_type;
|
---|
2210 | param_type __p1(__p.m() / 2);
|
---|
2211 | param_type __p2(__p.n() / 2);
|
---|
2212 | while (__f != __t)
|
---|
2213 | *__f++ = ((_M_gd_x(__urng, __p1) * n())
|
---|
2214 | / (_M_gd_y(__urng, __p2) * m()));
|
---|
2215 | }
|
---|
2216 |
|
---|
2217 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2218 | std::basic_ostream<_CharT, _Traits>&
|
---|
2219 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2220 | const fisher_f_distribution<_RealType>& __x)
|
---|
2221 | {
|
---|
2222 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2223 |
|
---|
2224 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2225 | const _CharT __fill = __os.fill();
|
---|
2226 | const std::streamsize __precision = __os.precision();
|
---|
2227 | const _CharT __space = __os.widen(' ');
|
---|
2228 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2229 | __os.fill(__space);
|
---|
2230 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2231 |
|
---|
2232 | __os << __x.m() << __space << __x.n()
|
---|
2233 | << __space << __x._M_gd_x << __space << __x._M_gd_y;
|
---|
2234 |
|
---|
2235 | __os.flags(__flags);
|
---|
2236 | __os.fill(__fill);
|
---|
2237 | __os.precision(__precision);
|
---|
2238 | return __os;
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2242 | std::basic_istream<_CharT, _Traits>&
|
---|
2243 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2244 | fisher_f_distribution<_RealType>& __x)
|
---|
2245 | {
|
---|
2246 | using param_type
|
---|
2247 | = typename fisher_f_distribution<_RealType>::param_type;
|
---|
2248 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2249 |
|
---|
2250 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2251 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2252 |
|
---|
2253 | _RealType __m, __n;
|
---|
2254 | if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y)
|
---|
2255 | __x.param(param_type(__m, __n));
|
---|
2256 |
|
---|
2257 | __is.flags(__flags);
|
---|
2258 | return __is;
|
---|
2259 | }
|
---|
2260 |
|
---|
2261 |
|
---|
2262 | template<typename _RealType>
|
---|
2263 | template<typename _ForwardIterator,
|
---|
2264 | typename _UniformRandomNumberGenerator>
|
---|
2265 | void
|
---|
2266 | std::student_t_distribution<_RealType>::
|
---|
2267 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2268 | _UniformRandomNumberGenerator& __urng)
|
---|
2269 | {
|
---|
2270 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2271 | while (__f != __t)
|
---|
2272 | *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng));
|
---|
2273 | }
|
---|
2274 |
|
---|
2275 | template<typename _RealType>
|
---|
2276 | template<typename _ForwardIterator,
|
---|
2277 | typename _UniformRandomNumberGenerator>
|
---|
2278 | void
|
---|
2279 | std::student_t_distribution<_RealType>::
|
---|
2280 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2281 | _UniformRandomNumberGenerator& __urng,
|
---|
2282 | const param_type& __p)
|
---|
2283 | {
|
---|
2284 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2285 | typename std::gamma_distribution<result_type>::param_type
|
---|
2286 | __p2(__p.n() / 2, 2);
|
---|
2287 | while (__f != __t)
|
---|
2288 | *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2));
|
---|
2289 | }
|
---|
2290 |
|
---|
2291 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2292 | std::basic_ostream<_CharT, _Traits>&
|
---|
2293 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2294 | const student_t_distribution<_RealType>& __x)
|
---|
2295 | {
|
---|
2296 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2297 |
|
---|
2298 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2299 | const _CharT __fill = __os.fill();
|
---|
2300 | const std::streamsize __precision = __os.precision();
|
---|
2301 | const _CharT __space = __os.widen(' ');
|
---|
2302 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2303 | __os.fill(__space);
|
---|
2304 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2305 |
|
---|
2306 | __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
|
---|
2307 |
|
---|
2308 | __os.flags(__flags);
|
---|
2309 | __os.fill(__fill);
|
---|
2310 | __os.precision(__precision);
|
---|
2311 | return __os;
|
---|
2312 | }
|
---|
2313 |
|
---|
2314 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2315 | std::basic_istream<_CharT, _Traits>&
|
---|
2316 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2317 | student_t_distribution<_RealType>& __x)
|
---|
2318 | {
|
---|
2319 | using param_type
|
---|
2320 | = typename student_t_distribution<_RealType>::param_type;
|
---|
2321 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2322 |
|
---|
2323 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2324 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2325 |
|
---|
2326 | _RealType __n;
|
---|
2327 | if (__is >> __n >> __x._M_nd >> __x._M_gd)
|
---|
2328 | __x.param(param_type(__n));
|
---|
2329 |
|
---|
2330 | __is.flags(__flags);
|
---|
2331 | return __is;
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 |
|
---|
2335 | template<typename _RealType>
|
---|
2336 | void
|
---|
2337 | gamma_distribution<_RealType>::param_type::
|
---|
2338 | _M_initialize()
|
---|
2339 | {
|
---|
2340 | _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
|
---|
2341 |
|
---|
2342 | const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
|
---|
2343 | _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
|
---|
2344 | }
|
---|
2345 |
|
---|
2346 | /**
|
---|
2347 | * Marsaglia, G. and Tsang, W. W.
|
---|
2348 | * "A Simple Method for Generating Gamma Variables"
|
---|
2349 | * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
|
---|
2350 | */
|
---|
2351 | template<typename _RealType>
|
---|
2352 | template<typename _UniformRandomNumberGenerator>
|
---|
2353 | typename gamma_distribution<_RealType>::result_type
|
---|
2354 | gamma_distribution<_RealType>::
|
---|
2355 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2356 | const param_type& __param)
|
---|
2357 | {
|
---|
2358 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2359 | __aurng(__urng);
|
---|
2360 |
|
---|
2361 | result_type __u, __v, __n;
|
---|
2362 | const result_type __a1 = (__param._M_malpha
|
---|
2363 | - _RealType(1.0) / _RealType(3.0));
|
---|
2364 |
|
---|
2365 | do
|
---|
2366 | {
|
---|
2367 | do
|
---|
2368 | {
|
---|
2369 | __n = _M_nd(__urng);
|
---|
2370 | __v = result_type(1.0) + __param._M_a2 * __n;
|
---|
2371 | }
|
---|
2372 | while (__v <= 0.0);
|
---|
2373 |
|
---|
2374 | __v = __v * __v * __v;
|
---|
2375 | __u = __aurng();
|
---|
2376 | }
|
---|
2377 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
|
---|
2378 | && (std::log(__u) > (0.5 * __n * __n + __a1
|
---|
2379 | * (1.0 - __v + std::log(__v)))));
|
---|
2380 |
|
---|
2381 | if (__param.alpha() == __param._M_malpha)
|
---|
2382 | return __a1 * __v * __param.beta();
|
---|
2383 | else
|
---|
2384 | {
|
---|
2385 | do
|
---|
2386 | __u = __aurng();
|
---|
2387 | while (__u == 0.0);
|
---|
2388 |
|
---|
2389 | return (std::pow(__u, result_type(1.0) / __param.alpha())
|
---|
2390 | * __a1 * __v * __param.beta());
|
---|
2391 | }
|
---|
2392 | }
|
---|
2393 |
|
---|
2394 | template<typename _RealType>
|
---|
2395 | template<typename _ForwardIterator,
|
---|
2396 | typename _UniformRandomNumberGenerator>
|
---|
2397 | void
|
---|
2398 | gamma_distribution<_RealType>::
|
---|
2399 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2400 | _UniformRandomNumberGenerator& __urng,
|
---|
2401 | const param_type& __param)
|
---|
2402 | {
|
---|
2403 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2404 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2405 | __aurng(__urng);
|
---|
2406 |
|
---|
2407 | result_type __u, __v, __n;
|
---|
2408 | const result_type __a1 = (__param._M_malpha
|
---|
2409 | - _RealType(1.0) / _RealType(3.0));
|
---|
2410 |
|
---|
2411 | if (__param.alpha() == __param._M_malpha)
|
---|
2412 | while (__f != __t)
|
---|
2413 | {
|
---|
2414 | do
|
---|
2415 | {
|
---|
2416 | do
|
---|
2417 | {
|
---|
2418 | __n = _M_nd(__urng);
|
---|
2419 | __v = result_type(1.0) + __param._M_a2 * __n;
|
---|
2420 | }
|
---|
2421 | while (__v <= 0.0);
|
---|
2422 |
|
---|
2423 | __v = __v * __v * __v;
|
---|
2424 | __u = __aurng();
|
---|
2425 | }
|
---|
2426 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
|
---|
2427 | && (std::log(__u) > (0.5 * __n * __n + __a1
|
---|
2428 | * (1.0 - __v + std::log(__v)))));
|
---|
2429 |
|
---|
2430 | *__f++ = __a1 * __v * __param.beta();
|
---|
2431 | }
|
---|
2432 | else
|
---|
2433 | while (__f != __t)
|
---|
2434 | {
|
---|
2435 | do
|
---|
2436 | {
|
---|
2437 | do
|
---|
2438 | {
|
---|
2439 | __n = _M_nd(__urng);
|
---|
2440 | __v = result_type(1.0) + __param._M_a2 * __n;
|
---|
2441 | }
|
---|
2442 | while (__v <= 0.0);
|
---|
2443 |
|
---|
2444 | __v = __v * __v * __v;
|
---|
2445 | __u = __aurng();
|
---|
2446 | }
|
---|
2447 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
|
---|
2448 | && (std::log(__u) > (0.5 * __n * __n + __a1
|
---|
2449 | * (1.0 - __v + std::log(__v)))));
|
---|
2450 |
|
---|
2451 | do
|
---|
2452 | __u = __aurng();
|
---|
2453 | while (__u == 0.0);
|
---|
2454 |
|
---|
2455 | *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha())
|
---|
2456 | * __a1 * __v * __param.beta());
|
---|
2457 | }
|
---|
2458 | }
|
---|
2459 |
|
---|
2460 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2461 | std::basic_ostream<_CharT, _Traits>&
|
---|
2462 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2463 | const gamma_distribution<_RealType>& __x)
|
---|
2464 | {
|
---|
2465 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2466 |
|
---|
2467 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2468 | const _CharT __fill = __os.fill();
|
---|
2469 | const std::streamsize __precision = __os.precision();
|
---|
2470 | const _CharT __space = __os.widen(' ');
|
---|
2471 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2472 | __os.fill(__space);
|
---|
2473 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2474 |
|
---|
2475 | __os << __x.alpha() << __space << __x.beta()
|
---|
2476 | << __space << __x._M_nd;
|
---|
2477 |
|
---|
2478 | __os.flags(__flags);
|
---|
2479 | __os.fill(__fill);
|
---|
2480 | __os.precision(__precision);
|
---|
2481 | return __os;
|
---|
2482 | }
|
---|
2483 |
|
---|
2484 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2485 | std::basic_istream<_CharT, _Traits>&
|
---|
2486 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2487 | gamma_distribution<_RealType>& __x)
|
---|
2488 | {
|
---|
2489 | using param_type = typename gamma_distribution<_RealType>::param_type;
|
---|
2490 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2491 |
|
---|
2492 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2493 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2494 |
|
---|
2495 | _RealType __alpha_val, __beta_val;
|
---|
2496 | if (__is >> __alpha_val >> __beta_val >> __x._M_nd)
|
---|
2497 | __x.param(param_type(__alpha_val, __beta_val));
|
---|
2498 |
|
---|
2499 | __is.flags(__flags);
|
---|
2500 | return __is;
|
---|
2501 | }
|
---|
2502 |
|
---|
2503 |
|
---|
2504 | template<typename _RealType>
|
---|
2505 | template<typename _UniformRandomNumberGenerator>
|
---|
2506 | typename weibull_distribution<_RealType>::result_type
|
---|
2507 | weibull_distribution<_RealType>::
|
---|
2508 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2509 | const param_type& __p)
|
---|
2510 | {
|
---|
2511 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2512 | __aurng(__urng);
|
---|
2513 | return __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
|
---|
2514 | result_type(1) / __p.a());
|
---|
2515 | }
|
---|
2516 |
|
---|
2517 | template<typename _RealType>
|
---|
2518 | template<typename _ForwardIterator,
|
---|
2519 | typename _UniformRandomNumberGenerator>
|
---|
2520 | void
|
---|
2521 | weibull_distribution<_RealType>::
|
---|
2522 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2523 | _UniformRandomNumberGenerator& __urng,
|
---|
2524 | const param_type& __p)
|
---|
2525 | {
|
---|
2526 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2527 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2528 | __aurng(__urng);
|
---|
2529 | auto __inv_a = result_type(1) / __p.a();
|
---|
2530 |
|
---|
2531 | while (__f != __t)
|
---|
2532 | *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
|
---|
2533 | __inv_a);
|
---|
2534 | }
|
---|
2535 |
|
---|
2536 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2537 | std::basic_ostream<_CharT, _Traits>&
|
---|
2538 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2539 | const weibull_distribution<_RealType>& __x)
|
---|
2540 | {
|
---|
2541 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2542 |
|
---|
2543 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2544 | const _CharT __fill = __os.fill();
|
---|
2545 | const std::streamsize __precision = __os.precision();
|
---|
2546 | const _CharT __space = __os.widen(' ');
|
---|
2547 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2548 | __os.fill(__space);
|
---|
2549 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2550 |
|
---|
2551 | __os << __x.a() << __space << __x.b();
|
---|
2552 |
|
---|
2553 | __os.flags(__flags);
|
---|
2554 | __os.fill(__fill);
|
---|
2555 | __os.precision(__precision);
|
---|
2556 | return __os;
|
---|
2557 | }
|
---|
2558 |
|
---|
2559 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2560 | std::basic_istream<_CharT, _Traits>&
|
---|
2561 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2562 | weibull_distribution<_RealType>& __x)
|
---|
2563 | {
|
---|
2564 | using param_type = typename weibull_distribution<_RealType>::param_type;
|
---|
2565 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2566 |
|
---|
2567 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2568 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2569 |
|
---|
2570 | _RealType __a, __b;
|
---|
2571 | if (__is >> __a >> __b)
|
---|
2572 | __x.param(param_type(__a, __b));
|
---|
2573 |
|
---|
2574 | __is.flags(__flags);
|
---|
2575 | return __is;
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 |
|
---|
2579 | template<typename _RealType>
|
---|
2580 | template<typename _UniformRandomNumberGenerator>
|
---|
2581 | typename extreme_value_distribution<_RealType>::result_type
|
---|
2582 | extreme_value_distribution<_RealType>::
|
---|
2583 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2584 | const param_type& __p)
|
---|
2585 | {
|
---|
2586 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2587 | __aurng(__urng);
|
---|
2588 | return __p.a() - __p.b() * std::log(-std::log(result_type(1)
|
---|
2589 | - __aurng()));
|
---|
2590 | }
|
---|
2591 |
|
---|
2592 | template<typename _RealType>
|
---|
2593 | template<typename _ForwardIterator,
|
---|
2594 | typename _UniformRandomNumberGenerator>
|
---|
2595 | void
|
---|
2596 | extreme_value_distribution<_RealType>::
|
---|
2597 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2598 | _UniformRandomNumberGenerator& __urng,
|
---|
2599 | const param_type& __p)
|
---|
2600 | {
|
---|
2601 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2602 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
|
---|
2603 | __aurng(__urng);
|
---|
2604 |
|
---|
2605 | while (__f != __t)
|
---|
2606 | *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1)
|
---|
2607 | - __aurng()));
|
---|
2608 | }
|
---|
2609 |
|
---|
2610 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2611 | std::basic_ostream<_CharT, _Traits>&
|
---|
2612 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2613 | const extreme_value_distribution<_RealType>& __x)
|
---|
2614 | {
|
---|
2615 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2616 |
|
---|
2617 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2618 | const _CharT __fill = __os.fill();
|
---|
2619 | const std::streamsize __precision = __os.precision();
|
---|
2620 | const _CharT __space = __os.widen(' ');
|
---|
2621 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2622 | __os.fill(__space);
|
---|
2623 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2624 |
|
---|
2625 | __os << __x.a() << __space << __x.b();
|
---|
2626 |
|
---|
2627 | __os.flags(__flags);
|
---|
2628 | __os.fill(__fill);
|
---|
2629 | __os.precision(__precision);
|
---|
2630 | return __os;
|
---|
2631 | }
|
---|
2632 |
|
---|
2633 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2634 | std::basic_istream<_CharT, _Traits>&
|
---|
2635 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2636 | extreme_value_distribution<_RealType>& __x)
|
---|
2637 | {
|
---|
2638 | using param_type
|
---|
2639 | = typename extreme_value_distribution<_RealType>::param_type;
|
---|
2640 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2641 |
|
---|
2642 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2643 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2644 |
|
---|
2645 | _RealType __a, __b;
|
---|
2646 | if (__is >> __a >> __b)
|
---|
2647 | __x.param(param_type(__a, __b));
|
---|
2648 |
|
---|
2649 | __is.flags(__flags);
|
---|
2650 | return __is;
|
---|
2651 | }
|
---|
2652 |
|
---|
2653 |
|
---|
2654 | template<typename _IntType>
|
---|
2655 | void
|
---|
2656 | discrete_distribution<_IntType>::param_type::
|
---|
2657 | _M_initialize()
|
---|
2658 | {
|
---|
2659 | if (_M_prob.size() < 2)
|
---|
2660 | {
|
---|
2661 | _M_prob.clear();
|
---|
2662 | return;
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 | const double __sum = std::accumulate(_M_prob.begin(),
|
---|
2666 | _M_prob.end(), 0.0);
|
---|
2667 | __glibcxx_assert(__sum > 0);
|
---|
2668 | // Now normalize the probabilites.
|
---|
2669 | __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
|
---|
2670 | __sum);
|
---|
2671 | // Accumulate partial sums.
|
---|
2672 | _M_cp.reserve(_M_prob.size());
|
---|
2673 | std::partial_sum(_M_prob.begin(), _M_prob.end(),
|
---|
2674 | std::back_inserter(_M_cp));
|
---|
2675 | // Make sure the last cumulative probability is one.
|
---|
2676 | _M_cp[_M_cp.size() - 1] = 1.0;
|
---|
2677 | }
|
---|
2678 |
|
---|
2679 | template<typename _IntType>
|
---|
2680 | template<typename _Func>
|
---|
2681 | discrete_distribution<_IntType>::param_type::
|
---|
2682 | param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
|
---|
2683 | : _M_prob(), _M_cp()
|
---|
2684 | {
|
---|
2685 | const size_t __n = __nw == 0 ? 1 : __nw;
|
---|
2686 | const double __delta = (__xmax - __xmin) / __n;
|
---|
2687 |
|
---|
2688 | _M_prob.reserve(__n);
|
---|
2689 | for (size_t __k = 0; __k < __nw; ++__k)
|
---|
2690 | _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
|
---|
2691 |
|
---|
2692 | _M_initialize();
|
---|
2693 | }
|
---|
2694 |
|
---|
2695 | template<typename _IntType>
|
---|
2696 | template<typename _UniformRandomNumberGenerator>
|
---|
2697 | typename discrete_distribution<_IntType>::result_type
|
---|
2698 | discrete_distribution<_IntType>::
|
---|
2699 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2700 | const param_type& __param)
|
---|
2701 | {
|
---|
2702 | if (__param._M_cp.empty())
|
---|
2703 | return result_type(0);
|
---|
2704 |
|
---|
2705 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
2706 | __aurng(__urng);
|
---|
2707 |
|
---|
2708 | const double __p = __aurng();
|
---|
2709 | auto __pos = std::lower_bound(__param._M_cp.begin(),
|
---|
2710 | __param._M_cp.end(), __p);
|
---|
2711 |
|
---|
2712 | return __pos - __param._M_cp.begin();
|
---|
2713 | }
|
---|
2714 |
|
---|
2715 | template<typename _IntType>
|
---|
2716 | template<typename _ForwardIterator,
|
---|
2717 | typename _UniformRandomNumberGenerator>
|
---|
2718 | void
|
---|
2719 | discrete_distribution<_IntType>::
|
---|
2720 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2721 | _UniformRandomNumberGenerator& __urng,
|
---|
2722 | const param_type& __param)
|
---|
2723 | {
|
---|
2724 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2725 |
|
---|
2726 | if (__param._M_cp.empty())
|
---|
2727 | {
|
---|
2728 | while (__f != __t)
|
---|
2729 | *__f++ = result_type(0);
|
---|
2730 | return;
|
---|
2731 | }
|
---|
2732 |
|
---|
2733 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
2734 | __aurng(__urng);
|
---|
2735 |
|
---|
2736 | while (__f != __t)
|
---|
2737 | {
|
---|
2738 | const double __p = __aurng();
|
---|
2739 | auto __pos = std::lower_bound(__param._M_cp.begin(),
|
---|
2740 | __param._M_cp.end(), __p);
|
---|
2741 |
|
---|
2742 | *__f++ = __pos - __param._M_cp.begin();
|
---|
2743 | }
|
---|
2744 | }
|
---|
2745 |
|
---|
2746 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
2747 | std::basic_ostream<_CharT, _Traits>&
|
---|
2748 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2749 | const discrete_distribution<_IntType>& __x)
|
---|
2750 | {
|
---|
2751 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2752 |
|
---|
2753 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2754 | const _CharT __fill = __os.fill();
|
---|
2755 | const std::streamsize __precision = __os.precision();
|
---|
2756 | const _CharT __space = __os.widen(' ');
|
---|
2757 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2758 | __os.fill(__space);
|
---|
2759 | __os.precision(std::numeric_limits<double>::max_digits10);
|
---|
2760 |
|
---|
2761 | std::vector<double> __prob = __x.probabilities();
|
---|
2762 | __os << __prob.size();
|
---|
2763 | for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
|
---|
2764 | __os << __space << *__dit;
|
---|
2765 |
|
---|
2766 | __os.flags(__flags);
|
---|
2767 | __os.fill(__fill);
|
---|
2768 | __os.precision(__precision);
|
---|
2769 | return __os;
|
---|
2770 | }
|
---|
2771 |
|
---|
2772 | namespace __detail
|
---|
2773 | {
|
---|
2774 | template<typename _ValT, typename _CharT, typename _Traits>
|
---|
2775 | basic_istream<_CharT, _Traits>&
|
---|
2776 | __extract_params(basic_istream<_CharT, _Traits>& __is,
|
---|
2777 | vector<_ValT>& __vals, size_t __n)
|
---|
2778 | {
|
---|
2779 | __vals.reserve(__n);
|
---|
2780 | while (__n--)
|
---|
2781 | {
|
---|
2782 | _ValT __val;
|
---|
2783 | if (__is >> __val)
|
---|
2784 | __vals.push_back(__val);
|
---|
2785 | else
|
---|
2786 | break;
|
---|
2787 | }
|
---|
2788 | return __is;
|
---|
2789 | }
|
---|
2790 | } // namespace __detail
|
---|
2791 |
|
---|
2792 | template<typename _IntType, typename _CharT, typename _Traits>
|
---|
2793 | std::basic_istream<_CharT, _Traits>&
|
---|
2794 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
2795 | discrete_distribution<_IntType>& __x)
|
---|
2796 | {
|
---|
2797 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
2798 |
|
---|
2799 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
2800 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
2801 |
|
---|
2802 | size_t __n;
|
---|
2803 | if (__is >> __n)
|
---|
2804 | {
|
---|
2805 | std::vector<double> __prob_vec;
|
---|
2806 | if (__detail::__extract_params(__is, __prob_vec, __n))
|
---|
2807 | __x.param({__prob_vec.begin(), __prob_vec.end()});
|
---|
2808 | }
|
---|
2809 |
|
---|
2810 | __is.flags(__flags);
|
---|
2811 | return __is;
|
---|
2812 | }
|
---|
2813 |
|
---|
2814 |
|
---|
2815 | template<typename _RealType>
|
---|
2816 | void
|
---|
2817 | piecewise_constant_distribution<_RealType>::param_type::
|
---|
2818 | _M_initialize()
|
---|
2819 | {
|
---|
2820 | if (_M_int.size() < 2
|
---|
2821 | || (_M_int.size() == 2
|
---|
2822 | && _M_int[0] == _RealType(0)
|
---|
2823 | && _M_int[1] == _RealType(1)))
|
---|
2824 | {
|
---|
2825 | _M_int.clear();
|
---|
2826 | _M_den.clear();
|
---|
2827 | return;
|
---|
2828 | }
|
---|
2829 |
|
---|
2830 | const double __sum = std::accumulate(_M_den.begin(),
|
---|
2831 | _M_den.end(), 0.0);
|
---|
2832 | __glibcxx_assert(__sum > 0);
|
---|
2833 |
|
---|
2834 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
|
---|
2835 | __sum);
|
---|
2836 |
|
---|
2837 | _M_cp.reserve(_M_den.size());
|
---|
2838 | std::partial_sum(_M_den.begin(), _M_den.end(),
|
---|
2839 | std::back_inserter(_M_cp));
|
---|
2840 |
|
---|
2841 | // Make sure the last cumulative probability is one.
|
---|
2842 | _M_cp[_M_cp.size() - 1] = 1.0;
|
---|
2843 |
|
---|
2844 | for (size_t __k = 0; __k < _M_den.size(); ++__k)
|
---|
2845 | _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
|
---|
2846 | }
|
---|
2847 |
|
---|
2848 | template<typename _RealType>
|
---|
2849 | template<typename _InputIteratorB, typename _InputIteratorW>
|
---|
2850 | piecewise_constant_distribution<_RealType>::param_type::
|
---|
2851 | param_type(_InputIteratorB __bbegin,
|
---|
2852 | _InputIteratorB __bend,
|
---|
2853 | _InputIteratorW __wbegin)
|
---|
2854 | : _M_int(), _M_den(), _M_cp()
|
---|
2855 | {
|
---|
2856 | if (__bbegin != __bend)
|
---|
2857 | {
|
---|
2858 | for (;;)
|
---|
2859 | {
|
---|
2860 | _M_int.push_back(*__bbegin);
|
---|
2861 | ++__bbegin;
|
---|
2862 | if (__bbegin == __bend)
|
---|
2863 | break;
|
---|
2864 |
|
---|
2865 | _M_den.push_back(*__wbegin);
|
---|
2866 | ++__wbegin;
|
---|
2867 | }
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 | _M_initialize();
|
---|
2871 | }
|
---|
2872 |
|
---|
2873 | template<typename _RealType>
|
---|
2874 | template<typename _Func>
|
---|
2875 | piecewise_constant_distribution<_RealType>::param_type::
|
---|
2876 | param_type(initializer_list<_RealType> __bl, _Func __fw)
|
---|
2877 | : _M_int(), _M_den(), _M_cp()
|
---|
2878 | {
|
---|
2879 | _M_int.reserve(__bl.size());
|
---|
2880 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
|
---|
2881 | _M_int.push_back(*__biter);
|
---|
2882 |
|
---|
2883 | _M_den.reserve(_M_int.size() - 1);
|
---|
2884 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
|
---|
2885 | _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
|
---|
2886 |
|
---|
2887 | _M_initialize();
|
---|
2888 | }
|
---|
2889 |
|
---|
2890 | template<typename _RealType>
|
---|
2891 | template<typename _Func>
|
---|
2892 | piecewise_constant_distribution<_RealType>::param_type::
|
---|
2893 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
|
---|
2894 | : _M_int(), _M_den(), _M_cp()
|
---|
2895 | {
|
---|
2896 | const size_t __n = __nw == 0 ? 1 : __nw;
|
---|
2897 | const _RealType __delta = (__xmax - __xmin) / __n;
|
---|
2898 |
|
---|
2899 | _M_int.reserve(__n + 1);
|
---|
2900 | for (size_t __k = 0; __k <= __nw; ++__k)
|
---|
2901 | _M_int.push_back(__xmin + __k * __delta);
|
---|
2902 |
|
---|
2903 | _M_den.reserve(__n);
|
---|
2904 | for (size_t __k = 0; __k < __nw; ++__k)
|
---|
2905 | _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
|
---|
2906 |
|
---|
2907 | _M_initialize();
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 | template<typename _RealType>
|
---|
2911 | template<typename _UniformRandomNumberGenerator>
|
---|
2912 | typename piecewise_constant_distribution<_RealType>::result_type
|
---|
2913 | piecewise_constant_distribution<_RealType>::
|
---|
2914 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
2915 | const param_type& __param)
|
---|
2916 | {
|
---|
2917 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
2918 | __aurng(__urng);
|
---|
2919 |
|
---|
2920 | const double __p = __aurng();
|
---|
2921 | if (__param._M_cp.empty())
|
---|
2922 | return __p;
|
---|
2923 |
|
---|
2924 | auto __pos = std::lower_bound(__param._M_cp.begin(),
|
---|
2925 | __param._M_cp.end(), __p);
|
---|
2926 | const size_t __i = __pos - __param._M_cp.begin();
|
---|
2927 |
|
---|
2928 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
|
---|
2929 |
|
---|
2930 | return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
|
---|
2931 | }
|
---|
2932 |
|
---|
2933 | template<typename _RealType>
|
---|
2934 | template<typename _ForwardIterator,
|
---|
2935 | typename _UniformRandomNumberGenerator>
|
---|
2936 | void
|
---|
2937 | piecewise_constant_distribution<_RealType>::
|
---|
2938 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
2939 | _UniformRandomNumberGenerator& __urng,
|
---|
2940 | const param_type& __param)
|
---|
2941 | {
|
---|
2942 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
2943 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
2944 | __aurng(__urng);
|
---|
2945 |
|
---|
2946 | if (__param._M_cp.empty())
|
---|
2947 | {
|
---|
2948 | while (__f != __t)
|
---|
2949 | *__f++ = __aurng();
|
---|
2950 | return;
|
---|
2951 | }
|
---|
2952 |
|
---|
2953 | while (__f != __t)
|
---|
2954 | {
|
---|
2955 | const double __p = __aurng();
|
---|
2956 |
|
---|
2957 | auto __pos = std::lower_bound(__param._M_cp.begin(),
|
---|
2958 | __param._M_cp.end(), __p);
|
---|
2959 | const size_t __i = __pos - __param._M_cp.begin();
|
---|
2960 |
|
---|
2961 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
|
---|
2962 |
|
---|
2963 | *__f++ = (__param._M_int[__i]
|
---|
2964 | + (__p - __pref) / __param._M_den[__i]);
|
---|
2965 | }
|
---|
2966 | }
|
---|
2967 |
|
---|
2968 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
2969 | std::basic_ostream<_CharT, _Traits>&
|
---|
2970 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
2971 | const piecewise_constant_distribution<_RealType>& __x)
|
---|
2972 | {
|
---|
2973 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
2974 |
|
---|
2975 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
2976 | const _CharT __fill = __os.fill();
|
---|
2977 | const std::streamsize __precision = __os.precision();
|
---|
2978 | const _CharT __space = __os.widen(' ');
|
---|
2979 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
2980 | __os.fill(__space);
|
---|
2981 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
2982 |
|
---|
2983 | std::vector<_RealType> __int = __x.intervals();
|
---|
2984 | __os << __int.size() - 1;
|
---|
2985 |
|
---|
2986 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
|
---|
2987 | __os << __space << *__xit;
|
---|
2988 |
|
---|
2989 | std::vector<double> __den = __x.densities();
|
---|
2990 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
|
---|
2991 | __os << __space << *__dit;
|
---|
2992 |
|
---|
2993 | __os.flags(__flags);
|
---|
2994 | __os.fill(__fill);
|
---|
2995 | __os.precision(__precision);
|
---|
2996 | return __os;
|
---|
2997 | }
|
---|
2998 |
|
---|
2999 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
3000 | std::basic_istream<_CharT, _Traits>&
|
---|
3001 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
3002 | piecewise_constant_distribution<_RealType>& __x)
|
---|
3003 | {
|
---|
3004 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
3005 |
|
---|
3006 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
3007 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
3008 |
|
---|
3009 | size_t __n;
|
---|
3010 | if (__is >> __n)
|
---|
3011 | {
|
---|
3012 | std::vector<_RealType> __int_vec;
|
---|
3013 | if (__detail::__extract_params(__is, __int_vec, __n + 1))
|
---|
3014 | {
|
---|
3015 | std::vector<double> __den_vec;
|
---|
3016 | if (__detail::__extract_params(__is, __den_vec, __n))
|
---|
3017 | {
|
---|
3018 | __x.param({ __int_vec.begin(), __int_vec.end(),
|
---|
3019 | __den_vec.begin() });
|
---|
3020 | }
|
---|
3021 | }
|
---|
3022 | }
|
---|
3023 |
|
---|
3024 | __is.flags(__flags);
|
---|
3025 | return __is;
|
---|
3026 | }
|
---|
3027 |
|
---|
3028 |
|
---|
3029 | template<typename _RealType>
|
---|
3030 | void
|
---|
3031 | piecewise_linear_distribution<_RealType>::param_type::
|
---|
3032 | _M_initialize()
|
---|
3033 | {
|
---|
3034 | if (_M_int.size() < 2
|
---|
3035 | || (_M_int.size() == 2
|
---|
3036 | && _M_int[0] == _RealType(0)
|
---|
3037 | && _M_int[1] == _RealType(1)
|
---|
3038 | && _M_den[0] == _M_den[1]))
|
---|
3039 | {
|
---|
3040 | _M_int.clear();
|
---|
3041 | _M_den.clear();
|
---|
3042 | return;
|
---|
3043 | }
|
---|
3044 |
|
---|
3045 | double __sum = 0.0;
|
---|
3046 | _M_cp.reserve(_M_int.size() - 1);
|
---|
3047 | _M_m.reserve(_M_int.size() - 1);
|
---|
3048 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
|
---|
3049 | {
|
---|
3050 | const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
|
---|
3051 | __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
|
---|
3052 | _M_cp.push_back(__sum);
|
---|
3053 | _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
|
---|
3054 | }
|
---|
3055 | __glibcxx_assert(__sum > 0);
|
---|
3056 |
|
---|
3057 | // Now normalize the densities...
|
---|
3058 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
|
---|
3059 | __sum);
|
---|
3060 | // ... and partial sums...
|
---|
3061 | __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum);
|
---|
3062 | // ... and slopes.
|
---|
3063 | __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum);
|
---|
3064 |
|
---|
3065 | // Make sure the last cumulative probablility is one.
|
---|
3066 | _M_cp[_M_cp.size() - 1] = 1.0;
|
---|
3067 | }
|
---|
3068 |
|
---|
3069 | template<typename _RealType>
|
---|
3070 | template<typename _InputIteratorB, typename _InputIteratorW>
|
---|
3071 | piecewise_linear_distribution<_RealType>::param_type::
|
---|
3072 | param_type(_InputIteratorB __bbegin,
|
---|
3073 | _InputIteratorB __bend,
|
---|
3074 | _InputIteratorW __wbegin)
|
---|
3075 | : _M_int(), _M_den(), _M_cp(), _M_m()
|
---|
3076 | {
|
---|
3077 | for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
|
---|
3078 | {
|
---|
3079 | _M_int.push_back(*__bbegin);
|
---|
3080 | _M_den.push_back(*__wbegin);
|
---|
3081 | }
|
---|
3082 |
|
---|
3083 | _M_initialize();
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 | template<typename _RealType>
|
---|
3087 | template<typename _Func>
|
---|
3088 | piecewise_linear_distribution<_RealType>::param_type::
|
---|
3089 | param_type(initializer_list<_RealType> __bl, _Func __fw)
|
---|
3090 | : _M_int(), _M_den(), _M_cp(), _M_m()
|
---|
3091 | {
|
---|
3092 | _M_int.reserve(__bl.size());
|
---|
3093 | _M_den.reserve(__bl.size());
|
---|
3094 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
|
---|
3095 | {
|
---|
3096 | _M_int.push_back(*__biter);
|
---|
3097 | _M_den.push_back(__fw(*__biter));
|
---|
3098 | }
|
---|
3099 |
|
---|
3100 | _M_initialize();
|
---|
3101 | }
|
---|
3102 |
|
---|
3103 | template<typename _RealType>
|
---|
3104 | template<typename _Func>
|
---|
3105 | piecewise_linear_distribution<_RealType>::param_type::
|
---|
3106 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
|
---|
3107 | : _M_int(), _M_den(), _M_cp(), _M_m()
|
---|
3108 | {
|
---|
3109 | const size_t __n = __nw == 0 ? 1 : __nw;
|
---|
3110 | const _RealType __delta = (__xmax - __xmin) / __n;
|
---|
3111 |
|
---|
3112 | _M_int.reserve(__n + 1);
|
---|
3113 | _M_den.reserve(__n + 1);
|
---|
3114 | for (size_t __k = 0; __k <= __nw; ++__k)
|
---|
3115 | {
|
---|
3116 | _M_int.push_back(__xmin + __k * __delta);
|
---|
3117 | _M_den.push_back(__fw(_M_int[__k] + __delta));
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 | _M_initialize();
|
---|
3121 | }
|
---|
3122 |
|
---|
3123 | template<typename _RealType>
|
---|
3124 | template<typename _UniformRandomNumberGenerator>
|
---|
3125 | typename piecewise_linear_distribution<_RealType>::result_type
|
---|
3126 | piecewise_linear_distribution<_RealType>::
|
---|
3127 | operator()(_UniformRandomNumberGenerator& __urng,
|
---|
3128 | const param_type& __param)
|
---|
3129 | {
|
---|
3130 | __detail::_Adaptor<_UniformRandomNumberGenerator, double>
|
---|
3131 | __aurng(__urng);
|
---|
3132 |
|
---|
3133 | const double __p = __aurng();
|
---|
3134 | if (__param._M_cp.empty())
|
---|
3135 | return __p;
|
---|
3136 |
|
---|
3137 | auto __pos = std::lower_bound(__param._M_cp.begin(),
|
---|
3138 | __param._M_cp.end(), __p);
|
---|
3139 | const size_t __i = __pos - __param._M_cp.begin();
|
---|
3140 |
|
---|
3141 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
|
---|
3142 |
|
---|
3143 | const double __a = 0.5 * __param._M_m[__i];
|
---|
3144 | const double __b = __param._M_den[__i];
|
---|
3145 | const double __cm = __p - __pref;
|
---|
3146 |
|
---|
3147 | _RealType __x = __param._M_int[__i];
|
---|
3148 | if (__a == 0)
|
---|
3149 | __x += __cm / __b;
|
---|
3150 | else
|
---|
3151 | {
|
---|
3152 | const double __d = __b * __b + 4.0 * __a * __cm;
|
---|
3153 | __x += 0.5 * (std::sqrt(__d) - __b) / __a;
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | return __x;
|
---|
3157 | }
|
---|
3158 |
|
---|
3159 | template<typename _RealType>
|
---|
3160 | template<typename _ForwardIterator,
|
---|
3161 | typename _UniformRandomNumberGenerator>
|
---|
3162 | void
|
---|
3163 | piecewise_linear_distribution<_RealType>::
|
---|
3164 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
|
---|
3165 | _UniformRandomNumberGenerator& __urng,
|
---|
3166 | const param_type& __param)
|
---|
3167 | {
|
---|
3168 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
|
---|
3169 | // We could duplicate everything from operator()...
|
---|
3170 | while (__f != __t)
|
---|
3171 | *__f++ = this->operator()(__urng, __param);
|
---|
3172 | }
|
---|
3173 |
|
---|
3174 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
3175 | std::basic_ostream<_CharT, _Traits>&
|
---|
3176 | operator<<(std::basic_ostream<_CharT, _Traits>& __os,
|
---|
3177 | const piecewise_linear_distribution<_RealType>& __x)
|
---|
3178 | {
|
---|
3179 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
|
---|
3180 |
|
---|
3181 | const typename __ios_base::fmtflags __flags = __os.flags();
|
---|
3182 | const _CharT __fill = __os.fill();
|
---|
3183 | const std::streamsize __precision = __os.precision();
|
---|
3184 | const _CharT __space = __os.widen(' ');
|
---|
3185 | __os.flags(__ios_base::scientific | __ios_base::left);
|
---|
3186 | __os.fill(__space);
|
---|
3187 | __os.precision(std::numeric_limits<_RealType>::max_digits10);
|
---|
3188 |
|
---|
3189 | std::vector<_RealType> __int = __x.intervals();
|
---|
3190 | __os << __int.size() - 1;
|
---|
3191 |
|
---|
3192 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
|
---|
3193 | __os << __space << *__xit;
|
---|
3194 |
|
---|
3195 | std::vector<double> __den = __x.densities();
|
---|
3196 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
|
---|
3197 | __os << __space << *__dit;
|
---|
3198 |
|
---|
3199 | __os.flags(__flags);
|
---|
3200 | __os.fill(__fill);
|
---|
3201 | __os.precision(__precision);
|
---|
3202 | return __os;
|
---|
3203 | }
|
---|
3204 |
|
---|
3205 | template<typename _RealType, typename _CharT, typename _Traits>
|
---|
3206 | std::basic_istream<_CharT, _Traits>&
|
---|
3207 | operator>>(std::basic_istream<_CharT, _Traits>& __is,
|
---|
3208 | piecewise_linear_distribution<_RealType>& __x)
|
---|
3209 | {
|
---|
3210 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
|
---|
3211 |
|
---|
3212 | const typename __ios_base::fmtflags __flags = __is.flags();
|
---|
3213 | __is.flags(__ios_base::dec | __ios_base::skipws);
|
---|
3214 |
|
---|
3215 | size_t __n;
|
---|
3216 | if (__is >> __n)
|
---|
3217 | {
|
---|
3218 | vector<_RealType> __int_vec;
|
---|
3219 | if (__detail::__extract_params(__is, __int_vec, __n + 1))
|
---|
3220 | {
|
---|
3221 | vector<double> __den_vec;
|
---|
3222 | if (__detail::__extract_params(__is, __den_vec, __n + 1))
|
---|
3223 | {
|
---|
3224 | __x.param({ __int_vec.begin(), __int_vec.end(),
|
---|
3225 | __den_vec.begin() });
|
---|
3226 | }
|
---|
3227 | }
|
---|
3228 | }
|
---|
3229 | __is.flags(__flags);
|
---|
3230 | return __is;
|
---|
3231 | }
|
---|
3232 |
|
---|
3233 |
|
---|
3234 | template<typename _IntType>
|
---|
3235 | seed_seq::seed_seq(std::initializer_list<_IntType> __il)
|
---|
3236 | {
|
---|
3237 | for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
|
---|
3238 | _M_v.push_back(__detail::__mod<result_type,
|
---|
3239 | __detail::_Shift<result_type, 32>::__value>(*__iter));
|
---|
3240 | }
|
---|
3241 |
|
---|
3242 | template<typename _InputIterator>
|
---|
3243 | seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
|
---|
3244 | {
|
---|
3245 | for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
|
---|
3246 | _M_v.push_back(__detail::__mod<result_type,
|
---|
3247 | __detail::_Shift<result_type, 32>::__value>(*__iter));
|
---|
3248 | }
|
---|
3249 |
|
---|
3250 | template<typename _RandomAccessIterator>
|
---|
3251 | void
|
---|
3252 | seed_seq::generate(_RandomAccessIterator __begin,
|
---|
3253 | _RandomAccessIterator __end)
|
---|
3254 | {
|
---|
3255 | typedef typename iterator_traits<_RandomAccessIterator>::value_type
|
---|
3256 | _Type;
|
---|
3257 |
|
---|
3258 | if (__begin == __end)
|
---|
3259 | return;
|
---|
3260 |
|
---|
3261 | std::fill(__begin, __end, _Type(0x8b8b8b8bu));
|
---|
3262 |
|
---|
3263 | const size_t __n = __end - __begin;
|
---|
3264 | const size_t __s = _M_v.size();
|
---|
3265 | const size_t __t = (__n >= 623) ? 11
|
---|
3266 | : (__n >= 68) ? 7
|
---|
3267 | : (__n >= 39) ? 5
|
---|
3268 | : (__n >= 7) ? 3
|
---|
3269 | : (__n - 1) / 2;
|
---|
3270 | const size_t __p = (__n - __t) / 2;
|
---|
3271 | const size_t __q = __p + __t;
|
---|
3272 | const size_t __m = std::max(size_t(__s + 1), __n);
|
---|
3273 |
|
---|
3274 | #ifndef __UINT32_TYPE__
|
---|
3275 | struct _Up
|
---|
3276 | {
|
---|
3277 | _Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { }
|
---|
3278 |
|
---|
3279 | operator uint_least32_t() const { return _M_v; }
|
---|
3280 |
|
---|
3281 | uint_least32_t _M_v;
|
---|
3282 | };
|
---|
3283 | using uint32_t = _Up;
|
---|
3284 | #endif
|
---|
3285 |
|
---|
3286 | // k == 0, every element in [begin,end) equals 0x8b8b8b8bu
|
---|
3287 | {
|
---|
3288 | uint32_t __r1 = 1371501266u;
|
---|
3289 | uint32_t __r2 = __r1 + __s;
|
---|
3290 | __begin[__p] += __r1;
|
---|
3291 | __begin[__q] = (uint32_t)__begin[__q] + __r2;
|
---|
3292 | __begin[0] = __r2;
|
---|
3293 | }
|
---|
3294 |
|
---|
3295 | for (size_t __k = 1; __k <= __s; ++__k)
|
---|
3296 | {
|
---|
3297 | const size_t __kn = __k % __n;
|
---|
3298 | const size_t __kpn = (__k + __p) % __n;
|
---|
3299 | const size_t __kqn = (__k + __q) % __n;
|
---|
3300 | uint32_t __arg = (__begin[__kn]
|
---|
3301 | ^ __begin[__kpn]
|
---|
3302 | ^ __begin[(__k - 1) % __n]);
|
---|
3303 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27));
|
---|
3304 | uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1];
|
---|
3305 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1;
|
---|
3306 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2;
|
---|
3307 | __begin[__kn] = __r2;
|
---|
3308 | }
|
---|
3309 |
|
---|
3310 | for (size_t __k = __s + 1; __k < __m; ++__k)
|
---|
3311 | {
|
---|
3312 | const size_t __kn = __k % __n;
|
---|
3313 | const size_t __kpn = (__k + __p) % __n;
|
---|
3314 | const size_t __kqn = (__k + __q) % __n;
|
---|
3315 | uint32_t __arg = (__begin[__kn]
|
---|
3316 | ^ __begin[__kpn]
|
---|
3317 | ^ __begin[(__k - 1) % __n]);
|
---|
3318 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27));
|
---|
3319 | uint32_t __r2 = __r1 + (uint32_t)__kn;
|
---|
3320 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1;
|
---|
3321 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2;
|
---|
3322 | __begin[__kn] = __r2;
|
---|
3323 | }
|
---|
3324 |
|
---|
3325 | for (size_t __k = __m; __k < __m + __n; ++__k)
|
---|
3326 | {
|
---|
3327 | const size_t __kn = __k % __n;
|
---|
3328 | const size_t __kpn = (__k + __p) % __n;
|
---|
3329 | const size_t __kqn = (__k + __q) % __n;
|
---|
3330 | uint32_t __arg = (__begin[__kn]
|
---|
3331 | + __begin[__kpn]
|
---|
3332 | + __begin[(__k - 1) % __n]);
|
---|
3333 | uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27));
|
---|
3334 | uint32_t __r4 = __r3 - __kn;
|
---|
3335 | __begin[__kpn] ^= __r3;
|
---|
3336 | __begin[__kqn] ^= __r4;
|
---|
3337 | __begin[__kn] = __r4;
|
---|
3338 | }
|
---|
3339 | }
|
---|
3340 |
|
---|
3341 | template<typename _RealType, size_t __bits,
|
---|
3342 | typename _UniformRandomNumberGenerator>
|
---|
3343 | _RealType
|
---|
3344 | generate_canonical(_UniformRandomNumberGenerator& __urng)
|
---|
3345 | {
|
---|
3346 | static_assert(std::is_floating_point<_RealType>::value,
|
---|
3347 | "template argument must be a floating point type");
|
---|
3348 |
|
---|
3349 | const size_t __b
|
---|
3350 | = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
|
---|
3351 | __bits);
|
---|
3352 | const long double __r = static_cast<long double>(__urng.max())
|
---|
3353 | - static_cast<long double>(__urng.min()) + 1.0L;
|
---|
3354 | const size_t __log2r = std::log(__r) / std::log(2.0L);
|
---|
3355 | const size_t __m = std::max<size_t>(1UL,
|
---|
3356 | (__b + __log2r - 1UL) / __log2r);
|
---|
3357 | _RealType __ret;
|
---|
3358 | _RealType __sum = _RealType(0);
|
---|
3359 | _RealType __tmp = _RealType(1);
|
---|
3360 | for (size_t __k = __m; __k != 0; --__k)
|
---|
3361 | {
|
---|
3362 | __sum += _RealType(__urng() - __urng.min()) * __tmp;
|
---|
3363 | __tmp *= __r;
|
---|
3364 | }
|
---|
3365 | __ret = __sum / __tmp;
|
---|
3366 | if (__builtin_expect(__ret >= _RealType(1), 0))
|
---|
3367 | {
|
---|
3368 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
3369 | __ret = std::nextafter(_RealType(1), _RealType(0));
|
---|
3370 | #else
|
---|
3371 | __ret = _RealType(1)
|
---|
3372 | - std::numeric_limits<_RealType>::epsilon() / _RealType(2);
|
---|
3373 | #endif
|
---|
3374 | }
|
---|
3375 | return __ret;
|
---|
3376 | }
|
---|
3377 |
|
---|
3378 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
3379 | } // namespace
|
---|
3380 |
|
---|
3381 | #endif
|
---|