// Raw memory manipulators -*- C++ -*- // Copyright (C) 2001-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_uninitialized.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{memory} */ #ifndef _STL_UNINITIALIZED_H #define _STL_UNINITIALIZED_H 1 #if __cplusplus >= 201103L #include #endif #include // copy #include // __alloc_traits #if __cplusplus >= 201703L #include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** @addtogroup memory * @{ */ /// @cond undocumented template struct __uninitialized_copy { template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { _ForwardIterator __cur = __result; __try { for (; __first != __last; ++__first, (void)++__cur) std::_Construct(std::__addressof(*__cur), *__first); return __cur; } __catch(...) { std::_Destroy(__result, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_copy { template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { return std::copy(__first, __last, __result); } }; /// @endcond /** * @brief Copies the range [first,last) into result. * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @return __result + (__first - __last) * * Like copy(), but does not require an initialized output range. */ template inline _ForwardIterator uninitialized_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { typedef typename iterator_traits<_InputIterator>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType2; #if __cplusplus < 201103L const bool __assignable = true; #else // Trivial types can have deleted copy constructor, but the std::copy // optimization that uses memmove would happily "copy" them anyway. static_assert(is_constructible<_ValueType2, decltype(*__first)>::value, "result type must be constructible from value type of input range"); typedef typename iterator_traits<_InputIterator>::reference _RefType1; typedef typename iterator_traits<_ForwardIterator>::reference _RefType2; // Trivial types can have deleted assignment, so using std::copy // would be ill-formed. Require assignability before using std::copy: const bool __assignable = is_assignable<_RefType2, _RefType1>::value; #endif return std::__uninitialized_copy<__is_trivial(_ValueType1) && __is_trivial(_ValueType2) && __assignable>:: __uninit_copy(__first, __last, __result); } /// @cond undocumented template struct __uninitialized_fill { template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { _ForwardIterator __cur = __first; __try { for (; __cur != __last; ++__cur) std::_Construct(std::__addressof(*__cur), __x); } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_fill { template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { std::fill(__first, __last, __x); } }; /// @endcond /** * @brief Copies the value x into the range [first,last). * @param __first An input iterator. * @param __last An input iterator. * @param __x The source value. * @return Nothing. * * Like fill(), but does not require an initialized output range. */ template inline void uninitialized_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; #if __cplusplus < 201103L const bool __assignable = true; #else // Trivial types can have deleted copy constructor, but the std::fill // optimization that uses memmove would happily "copy" them anyway. static_assert(is_constructible<_ValueType, const _Tp&>::value, "result type must be constructible from input type"); // Trivial types can have deleted assignment, so using std::fill // would be ill-formed. Require assignability before using std::fill: const bool __assignable = is_copy_assignable<_ValueType>::value; #endif std::__uninitialized_fill<__is_trivial(_ValueType) && __assignable>:: __uninit_fill(__first, __last, __x); } /// @cond undocumented template struct __uninitialized_fill_n { template static _ForwardIterator __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { _ForwardIterator __cur = __first; __try { for (; __n > 0; --__n, (void) ++__cur) std::_Construct(std::__addressof(*__cur), __x); return __cur; } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_fill_n { template static _ForwardIterator __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { return std::fill_n(__first, __n, __x); } }; /// @endcond // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 1339. uninitialized_fill_n should return the end of its range /** * @brief Copies the value x into the range [first,first+n). * @param __first An input iterator. * @param __n The number of copies to make. * @param __x The source value. * @return Nothing. * * Like fill_n(), but does not require an initialized output range. */ template inline _ForwardIterator uninitialized_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // Trivial types do not need a constructor to begin their lifetime, // so try to use std::fill_n to benefit from its memmove optimization. // For arbitrary class types and floating point types we can't assume // that __n > 0 and std::__size_to_integer(__n) > 0 are equivalent, // so only use std::fill_n when _Size is already an integral type. #if __cplusplus < 201103L const bool __can_fill = __is_integer<_Size>::__value; #else // Trivial types can have deleted copy constructor, but the std::fill_n // optimization that uses memmove would happily "copy" them anyway. static_assert(is_constructible<_ValueType, const _Tp&>::value, "result type must be constructible from input type"); // Trivial types can have deleted assignment, so using std::fill_n // would be ill-formed. Require assignability before using std::fill_n: constexpr bool __can_fill = __and_, is_copy_assignable<_ValueType>>::value; #endif return __uninitialized_fill_n<__is_trivial(_ValueType) && __can_fill>:: __uninit_fill_n(__first, __n, __x); } /// @cond undocumented // Extensions: versions of uninitialized_copy, uninitialized_fill, // and uninitialized_fill_n that take an allocator parameter. // We dispatch back to the standard versions when we're given the // default allocator. For nondefault allocators we do not use // any of the POD optimizations. template _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __cur = __result; __try { typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __first != __last; ++__first, (void)++__cur) __traits::construct(__alloc, std::__addressof(*__cur), *__first); return __cur; } __catch(...) { std::_Destroy(__result, __cur, __alloc); __throw_exception_again; } } template inline _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, allocator<_Tp>&) { return std::uninitialized_copy(__first, __last, __result); } template inline _ForwardIterator __uninitialized_move_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { return std::__uninitialized_copy_a(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result, __alloc); } template inline _ForwardIterator __uninitialized_move_if_noexcept_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { return std::__uninitialized_copy_a (_GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(__last), __result, __alloc); } template void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __cur = __first; __try { typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __cur != __last; ++__cur) __traits::construct(__alloc, std::__addressof(*__cur), __x); } __catch(...) { std::_Destroy(__first, __cur, __alloc); __throw_exception_again; } } template inline void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, allocator<_Tp2>&) { std::uninitialized_fill(__first, __last, __x); } template _ForwardIterator __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __cur = __first; __try { typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __n > 0; --__n, (void) ++__cur) __traits::construct(__alloc, std::__addressof(*__cur), __x); return __cur; } __catch(...) { std::_Destroy(__first, __cur, __alloc); __throw_exception_again; } } template inline _ForwardIterator __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, allocator<_Tp2>&) { return std::uninitialized_fill_n(__first, __n, __x); } // Extensions: __uninitialized_copy_move, __uninitialized_move_copy, // __uninitialized_fill_move, __uninitialized_move_fill. // All of these algorithms take a user-supplied allocator, which is used // for construction and destruction. // __uninitialized_copy_move // Copies [first1, last1) into [result, result + (last1 - first1)), and // move [first2, last2) into // [result, result + (last1 - first1) + (last2 - first2)). template inline _ForwardIterator __uninitialized_copy_move(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_copy_a(__first1, __last1, __result, __alloc); __try { return std::__uninitialized_move_a(__first2, __last2, __mid, __alloc); } __catch(...) { std::_Destroy(__result, __mid, __alloc); __throw_exception_again; } } // __uninitialized_move_copy // Moves [first1, last1) into [result, result + (last1 - first1)), and // copies [first2, last2) into // [result, result + (last1 - first1) + (last2 - first2)). template inline _ForwardIterator __uninitialized_move_copy(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_move_a(__first1, __last1, __result, __alloc); __try { return std::__uninitialized_copy_a(__first2, __last2, __mid, __alloc); } __catch(...) { std::_Destroy(__result, __mid, __alloc); __throw_exception_again; } } // __uninitialized_fill_move // Fills [result, mid) with x, and moves [first, last) into // [mid, mid + (last - first)). template inline _ForwardIterator __uninitialized_fill_move(_ForwardIterator __result, _ForwardIterator __mid, const _Tp& __x, _InputIterator __first, _InputIterator __last, _Allocator& __alloc) { std::__uninitialized_fill_a(__result, __mid, __x, __alloc); __try { return std::__uninitialized_move_a(__first, __last, __mid, __alloc); } __catch(...) { std::_Destroy(__result, __mid, __alloc); __throw_exception_again; } } // __uninitialized_move_fill // Moves [first1, last1) into [first2, first2 + (last1 - first1)), and // fills [first2 + (last1 - first1), last2) with x. template inline void __uninitialized_move_fill(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __mid2 = std::__uninitialized_move_a(__first1, __last1, __first2, __alloc); __try { std::__uninitialized_fill_a(__mid2, __last2, __x, __alloc); } __catch(...) { std::_Destroy(__first2, __mid2, __alloc); __throw_exception_again; } } /// @endcond #if __cplusplus >= 201103L /// @cond undocumented // Extensions: __uninitialized_default, __uninitialized_default_n, // __uninitialized_default_a, __uninitialized_default_n_a. template struct __uninitialized_default_1 { template static void __uninit_default(_ForwardIterator __first, _ForwardIterator __last) { _ForwardIterator __cur = __first; __try { for (; __cur != __last; ++__cur) std::_Construct(std::__addressof(*__cur)); } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_default_1 { template static void __uninit_default(_ForwardIterator __first, _ForwardIterator __last) { if (__first == __last) return; typename iterator_traits<_ForwardIterator>::value_type* __val = std::__addressof(*__first); std::_Construct(__val); if (++__first != __last) std::fill(__first, __last, *__val); } }; template struct __uninitialized_default_n_1 { template static _ForwardIterator __uninit_default_n(_ForwardIterator __first, _Size __n) { _ForwardIterator __cur = __first; __try { for (; __n > 0; --__n, (void) ++__cur) std::_Construct(std::__addressof(*__cur)); return __cur; } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_default_n_1 { template static _ForwardIterator __uninit_default_n(_ForwardIterator __first, _Size __n) { if (__n > 0) { typename iterator_traits<_ForwardIterator>::value_type* __val = std::__addressof(*__first); std::_Construct(__val); ++__first; __first = std::fill_n(__first, __n - 1, *__val); } return __first; } }; // __uninitialized_default // Fills [first, last) with value-initialized value_types. template inline void __uninitialized_default(_ForwardIterator __first, _ForwardIterator __last) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // trivial types can have deleted assignment const bool __assignable = is_copy_assignable<_ValueType>::value; std::__uninitialized_default_1<__is_trivial(_ValueType) && __assignable>:: __uninit_default(__first, __last); } // __uninitialized_default_n // Fills [first, first + n) with value-initialized value_types. template inline _ForwardIterator __uninitialized_default_n(_ForwardIterator __first, _Size __n) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // See uninitialized_fill_n for the conditions for using std::fill_n. constexpr bool __can_fill = __and_, is_copy_assignable<_ValueType>>::value; return __uninitialized_default_n_1<__is_trivial(_ValueType) && __can_fill>:: __uninit_default_n(__first, __n); } // __uninitialized_default_a // Fills [first, last) with value_types constructed by the allocator // alloc, with no arguments passed to the construct call. template void __uninitialized_default_a(_ForwardIterator __first, _ForwardIterator __last, _Allocator& __alloc) { _ForwardIterator __cur = __first; __try { typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __cur != __last; ++__cur) __traits::construct(__alloc, std::__addressof(*__cur)); } __catch(...) { std::_Destroy(__first, __cur, __alloc); __throw_exception_again; } } template inline void __uninitialized_default_a(_ForwardIterator __first, _ForwardIterator __last, allocator<_Tp>&) { std::__uninitialized_default(__first, __last); } // __uninitialized_default_n_a // Fills [first, first + n) with value_types constructed by the allocator // alloc, with no arguments passed to the construct call. template _ForwardIterator __uninitialized_default_n_a(_ForwardIterator __first, _Size __n, _Allocator& __alloc) { _ForwardIterator __cur = __first; __try { typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __n > 0; --__n, (void) ++__cur) __traits::construct(__alloc, std::__addressof(*__cur)); return __cur; } __catch(...) { std::_Destroy(__first, __cur, __alloc); __throw_exception_again; } } // __uninitialized_default_n_a specialization for std::allocator, // which ignores the allocator and value-initializes the elements. template inline _ForwardIterator __uninitialized_default_n_a(_ForwardIterator __first, _Size __n, allocator<_Tp>&) { return std::__uninitialized_default_n(__first, __n); } template struct __uninitialized_default_novalue_1 { template static void __uninit_default_novalue(_ForwardIterator __first, _ForwardIterator __last) { _ForwardIterator __cur = __first; __try { for (; __cur != __last; ++__cur) std::_Construct_novalue(std::__addressof(*__cur)); } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_default_novalue_1 { template static void __uninit_default_novalue(_ForwardIterator __first, _ForwardIterator __last) { } }; template struct __uninitialized_default_novalue_n_1 { template static _ForwardIterator __uninit_default_novalue_n(_ForwardIterator __first, _Size __n) { _ForwardIterator __cur = __first; __try { for (; __n > 0; --__n, (void) ++__cur) std::_Construct_novalue(std::__addressof(*__cur)); return __cur; } __catch(...) { std::_Destroy(__first, __cur); __throw_exception_again; } } }; template<> struct __uninitialized_default_novalue_n_1 { template static _ForwardIterator __uninit_default_novalue_n(_ForwardIterator __first, _Size __n) { return std::next(__first, __n); } }; // __uninitialized_default_novalue // Fills [first, last) with default-initialized value_types. template inline void __uninitialized_default_novalue(_ForwardIterator __first, _ForwardIterator __last) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; std::__uninitialized_default_novalue_1< is_trivially_default_constructible<_ValueType>::value>:: __uninit_default_novalue(__first, __last); } // __uninitialized_default_novalue_n // Fills [first, first + n) with default-initialized value_types. template inline _ForwardIterator __uninitialized_default_novalue_n(_ForwardIterator __first, _Size __n) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; return __uninitialized_default_novalue_n_1< is_trivially_default_constructible<_ValueType>::value>:: __uninit_default_novalue_n(__first, __n); } template _ForwardIterator __uninitialized_copy_n(_InputIterator __first, _Size __n, _ForwardIterator __result, input_iterator_tag) { _ForwardIterator __cur = __result; __try { for (; __n > 0; --__n, (void) ++__first, ++__cur) std::_Construct(std::__addressof(*__cur), *__first); return __cur; } __catch(...) { std::_Destroy(__result, __cur); __throw_exception_again; } } template inline _ForwardIterator __uninitialized_copy_n(_RandomAccessIterator __first, _Size __n, _ForwardIterator __result, random_access_iterator_tag) { return std::uninitialized_copy(__first, __first + __n, __result); } template pair<_InputIterator, _ForwardIterator> __uninitialized_copy_n_pair(_InputIterator __first, _Size __n, _ForwardIterator __result, input_iterator_tag) { _ForwardIterator __cur = __result; __try { for (; __n > 0; --__n, (void) ++__first, ++__cur) std::_Construct(std::__addressof(*__cur), *__first); return {__first, __cur}; } __catch(...) { std::_Destroy(__result, __cur); __throw_exception_again; } } template inline pair<_RandomAccessIterator, _ForwardIterator> __uninitialized_copy_n_pair(_RandomAccessIterator __first, _Size __n, _ForwardIterator __result, random_access_iterator_tag) { auto __second_res = uninitialized_copy(__first, __first + __n, __result); auto __first_res = std::next(__first, __n); return {__first_res, __second_res}; } /// @endcond /** * @brief Copies the range [first,first+n) into result. * @param __first An input iterator. * @param __n The number of elements to copy. * @param __result An output iterator. * @return __result + __n * * Like copy_n(), but does not require an initialized output range. */ template inline _ForwardIterator uninitialized_copy_n(_InputIterator __first, _Size __n, _ForwardIterator __result) { return std::__uninitialized_copy_n(__first, __n, __result, std::__iterator_category(__first)); } /// @cond undocumented template inline pair<_InputIterator, _ForwardIterator> __uninitialized_copy_n_pair(_InputIterator __first, _Size __n, _ForwardIterator __result) { return std::__uninitialized_copy_n_pair(__first, __n, __result, std::__iterator_category(__first)); } /// @endcond #endif #if __cplusplus >= 201703L # define __cpp_lib_raw_memory_algorithms 201606L /** * @brief Default-initializes objects in the range [first,last). * @param __first A forward iterator. * @param __last A forward iterator. */ template inline void uninitialized_default_construct(_ForwardIterator __first, _ForwardIterator __last) { __uninitialized_default_novalue(__first, __last); } /** * @brief Default-initializes objects in the range [first,first+count). * @param __first A forward iterator. * @param __count The number of objects to construct. * @return __first + __count */ template inline _ForwardIterator uninitialized_default_construct_n(_ForwardIterator __first, _Size __count) { return __uninitialized_default_novalue_n(__first, __count); } /** * @brief Value-initializes objects in the range [first,last). * @param __first A forward iterator. * @param __last A forward iterator. */ template inline void uninitialized_value_construct(_ForwardIterator __first, _ForwardIterator __last) { return __uninitialized_default(__first, __last); } /** * @brief Value-initializes objects in the range [first,first+count). * @param __first A forward iterator. * @param __count The number of objects to construct. * @return __result + __count */ template inline _ForwardIterator uninitialized_value_construct_n(_ForwardIterator __first, _Size __count) { return __uninitialized_default_n(__first, __count); } /** * @brief Move-construct from the range [first,last) into result. * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @return __result + (__first - __last) */ template inline _ForwardIterator uninitialized_move(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { return std::uninitialized_copy (_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result); } /** * @brief Move-construct from the range [first,first+count) into result. * @param __first An input iterator. * @param __count The number of objects to initialize. * @param __result An output iterator. * @return __result + __count */ template inline pair<_InputIterator, _ForwardIterator> uninitialized_move_n(_InputIterator __first, _Size __count, _ForwardIterator __result) { auto __res = std::__uninitialized_copy_n_pair (_GLIBCXX_MAKE_MOVE_ITERATOR(__first), __count, __result); return {__res.first.base(), __res.second}; } #endif // C++17 #if __cplusplus >= 201103L /// @cond undocumented template inline void __relocate_object_a(_Tp* __restrict __dest, _Up* __restrict __orig, _Allocator& __alloc) noexcept(noexcept(std::allocator_traits<_Allocator>::construct(__alloc, __dest, std::move(*__orig))) && noexcept(std::allocator_traits<_Allocator>::destroy( __alloc, std::__addressof(*__orig)))) { typedef std::allocator_traits<_Allocator> __traits; __traits::construct(__alloc, __dest, std::move(*__orig)); __traits::destroy(__alloc, std::__addressof(*__orig)); } // This class may be specialized for specific types. // Also known as is_trivially_relocatable. template struct __is_bitwise_relocatable : is_trivial<_Tp> { }; template inline __enable_if_t::value, _Tp*> __relocate_a_1(_Tp* __first, _Tp* __last, _Tp* __result, allocator<_Up>&) noexcept { ptrdiff_t __count = __last - __first; if (__count > 0) __builtin_memmove(__result, __first, __count * sizeof(_Tp)); return __result + __count; } template inline _ForwardIterator __relocate_a_1(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) noexcept(noexcept(std::__relocate_object_a(std::addressof(*__result), std::addressof(*__first), __alloc))) { typedef typename iterator_traits<_InputIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType2; static_assert(std::is_same<_ValueType, _ValueType2>::value, "relocation is only possible for values of the same type"); _ForwardIterator __cur = __result; for (; __first != __last; ++__first, (void)++__cur) std::__relocate_object_a(std::__addressof(*__cur), std::__addressof(*__first), __alloc); return __cur; } template inline _ForwardIterator __relocate_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) noexcept(noexcept(__relocate_a_1(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result), __alloc))) { return __relocate_a_1(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result), __alloc); } /// @endcond #endif /// @} group memory _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif /* _STL_UNINITIALIZED_H */