1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/bessel_function.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | /* __cyl_bessel_jn_asymp adapted from GNU GSL version 2.4 specfunc/bessel_j.c
|
---|
31 | * Copyright (C) 1996-2003 Gerard Jungman
|
---|
32 | */
|
---|
33 |
|
---|
34 | //
|
---|
35 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
36 | //
|
---|
37 |
|
---|
38 | // Written by Edward Smith-Rowland.
|
---|
39 | //
|
---|
40 | // References:
|
---|
41 | // (1) Handbook of Mathematical Functions,
|
---|
42 | // ed. Milton Abramowitz and Irene A. Stegun,
|
---|
43 | // Dover Publications,
|
---|
44 | // Section 9, pp. 355-434, Section 10 pp. 435-478
|
---|
45 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
46 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
47 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
48 | // 2nd ed, pp. 240-245
|
---|
49 |
|
---|
50 | #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
|
---|
51 | #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
|
---|
52 |
|
---|
53 | #include <tr1/special_function_util.h>
|
---|
54 |
|
---|
55 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
56 | {
|
---|
57 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
58 |
|
---|
59 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
60 | # define _GLIBCXX_MATH_NS ::std
|
---|
61 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
62 | namespace tr1
|
---|
63 | {
|
---|
64 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
65 | #else
|
---|
66 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
67 | #endif
|
---|
68 | // [5.2] Special functions
|
---|
69 |
|
---|
70 | // Implementation-space details.
|
---|
71 | namespace __detail
|
---|
72 | {
|
---|
73 | /**
|
---|
74 | * @brief Compute the gamma functions required by the Temme series
|
---|
75 | * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
|
---|
76 | * @f[
|
---|
77 | * \Gamma_1 = \frac{1}{2\mu}
|
---|
78 | * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
|
---|
79 | * @f]
|
---|
80 | * and
|
---|
81 | * @f[
|
---|
82 | * \Gamma_2 = \frac{1}{2}
|
---|
83 | * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
|
---|
84 | * @f]
|
---|
85 | * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
|
---|
86 | * is the nearest integer to @f$ \nu @f$.
|
---|
87 | * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
|
---|
88 | * are returned as well.
|
---|
89 | *
|
---|
90 | * The accuracy requirements on this are exquisite.
|
---|
91 | *
|
---|
92 | * @param __mu The input parameter of the gamma functions.
|
---|
93 | * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
|
---|
94 | * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
|
---|
95 | * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
|
---|
96 | * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
|
---|
97 | */
|
---|
98 | template <typename _Tp>
|
---|
99 | void
|
---|
100 | __gamma_temme(_Tp __mu,
|
---|
101 | _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
|
---|
102 | {
|
---|
103 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
104 | __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
|
---|
105 | __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
|
---|
106 | #else
|
---|
107 | __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
|
---|
108 | __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
|
---|
109 | #endif
|
---|
110 |
|
---|
111 | if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
|
---|
112 | __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
|
---|
113 | else
|
---|
114 | __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
|
---|
115 |
|
---|
116 | __gam2 = (__gammi + __gampl) / (_Tp(2));
|
---|
117 |
|
---|
118 | return;
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
|
---|
124 | * @f$ N_\nu(x) @f$ functions and their first derivatives
|
---|
125 | * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
|
---|
126 | * These four functions are computed together for numerical
|
---|
127 | * stability.
|
---|
128 | *
|
---|
129 | * @param __nu The order of the Bessel functions.
|
---|
130 | * @param __x The argument of the Bessel functions.
|
---|
131 | * @param __Jnu The output Bessel function of the first kind.
|
---|
132 | * @param __Nnu The output Neumann function (Bessel function of the second kind).
|
---|
133 | * @param __Jpnu The output derivative of the Bessel function of the first kind.
|
---|
134 | * @param __Npnu The output derivative of the Neumann function.
|
---|
135 | */
|
---|
136 | template <typename _Tp>
|
---|
137 | void
|
---|
138 | __bessel_jn(_Tp __nu, _Tp __x,
|
---|
139 | _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
|
---|
140 | {
|
---|
141 | if (__x == _Tp(0))
|
---|
142 | {
|
---|
143 | if (__nu == _Tp(0))
|
---|
144 | {
|
---|
145 | __Jnu = _Tp(1);
|
---|
146 | __Jpnu = _Tp(0);
|
---|
147 | }
|
---|
148 | else if (__nu == _Tp(1))
|
---|
149 | {
|
---|
150 | __Jnu = _Tp(0);
|
---|
151 | __Jpnu = _Tp(0.5L);
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 | __Jnu = _Tp(0);
|
---|
156 | __Jpnu = _Tp(0);
|
---|
157 | }
|
---|
158 | __Nnu = -std::numeric_limits<_Tp>::infinity();
|
---|
159 | __Npnu = std::numeric_limits<_Tp>::infinity();
|
---|
160 | return;
|
---|
161 | }
|
---|
162 |
|
---|
163 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
164 | // When the multiplier is N i.e.
|
---|
165 | // fp_min = N * min()
|
---|
166 | // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
|
---|
167 | //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
|
---|
168 | const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
|
---|
169 | const int __max_iter = 15000;
|
---|
170 | const _Tp __x_min = _Tp(2);
|
---|
171 |
|
---|
172 | const int __nl = (__x < __x_min
|
---|
173 | ? static_cast<int>(__nu + _Tp(0.5L))
|
---|
174 | : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
|
---|
175 |
|
---|
176 | const _Tp __mu = __nu - __nl;
|
---|
177 | const _Tp __mu2 = __mu * __mu;
|
---|
178 | const _Tp __xi = _Tp(1) / __x;
|
---|
179 | const _Tp __xi2 = _Tp(2) * __xi;
|
---|
180 | _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
|
---|
181 | int __isign = 1;
|
---|
182 | _Tp __h = __nu * __xi;
|
---|
183 | if (__h < __fp_min)
|
---|
184 | __h = __fp_min;
|
---|
185 | _Tp __b = __xi2 * __nu;
|
---|
186 | _Tp __d = _Tp(0);
|
---|
187 | _Tp __c = __h;
|
---|
188 | int __i;
|
---|
189 | for (__i = 1; __i <= __max_iter; ++__i)
|
---|
190 | {
|
---|
191 | __b += __xi2;
|
---|
192 | __d = __b - __d;
|
---|
193 | if (std::abs(__d) < __fp_min)
|
---|
194 | __d = __fp_min;
|
---|
195 | __c = __b - _Tp(1) / __c;
|
---|
196 | if (std::abs(__c) < __fp_min)
|
---|
197 | __c = __fp_min;
|
---|
198 | __d = _Tp(1) / __d;
|
---|
199 | const _Tp __del = __c * __d;
|
---|
200 | __h *= __del;
|
---|
201 | if (__d < _Tp(0))
|
---|
202 | __isign = -__isign;
|
---|
203 | if (std::abs(__del - _Tp(1)) < __eps)
|
---|
204 | break;
|
---|
205 | }
|
---|
206 | if (__i > __max_iter)
|
---|
207 | std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
|
---|
208 | "try asymptotic expansion."));
|
---|
209 | _Tp __Jnul = __isign * __fp_min;
|
---|
210 | _Tp __Jpnul = __h * __Jnul;
|
---|
211 | _Tp __Jnul1 = __Jnul;
|
---|
212 | _Tp __Jpnu1 = __Jpnul;
|
---|
213 | _Tp __fact = __nu * __xi;
|
---|
214 | for ( int __l = __nl; __l >= 1; --__l )
|
---|
215 | {
|
---|
216 | const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
|
---|
217 | __fact -= __xi;
|
---|
218 | __Jpnul = __fact * __Jnutemp - __Jnul;
|
---|
219 | __Jnul = __Jnutemp;
|
---|
220 | }
|
---|
221 | if (__Jnul == _Tp(0))
|
---|
222 | __Jnul = __eps;
|
---|
223 | _Tp __f= __Jpnul / __Jnul;
|
---|
224 | _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
|
---|
225 | if (__x < __x_min)
|
---|
226 | {
|
---|
227 | const _Tp __x2 = __x / _Tp(2);
|
---|
228 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
|
---|
229 | _Tp __fact = (std::abs(__pimu) < __eps
|
---|
230 | ? _Tp(1) : __pimu / std::sin(__pimu));
|
---|
231 | _Tp __d = -std::log(__x2);
|
---|
232 | _Tp __e = __mu * __d;
|
---|
233 | _Tp __fact2 = (std::abs(__e) < __eps
|
---|
234 | ? _Tp(1) : std::sinh(__e) / __e);
|
---|
235 | _Tp __gam1, __gam2, __gampl, __gammi;
|
---|
236 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
|
---|
237 | _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
|
---|
238 | * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
|
---|
239 | __e = std::exp(__e);
|
---|
240 | _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
|
---|
241 | _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
|
---|
242 | const _Tp __pimu2 = __pimu / _Tp(2);
|
---|
243 | _Tp __fact3 = (std::abs(__pimu2) < __eps
|
---|
244 | ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
|
---|
245 | _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
|
---|
246 | _Tp __c = _Tp(1);
|
---|
247 | __d = -__x2 * __x2;
|
---|
248 | _Tp __sum = __ff + __r * __q;
|
---|
249 | _Tp __sum1 = __p;
|
---|
250 | for (__i = 1; __i <= __max_iter; ++__i)
|
---|
251 | {
|
---|
252 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
|
---|
253 | __c *= __d / _Tp(__i);
|
---|
254 | __p /= _Tp(__i) - __mu;
|
---|
255 | __q /= _Tp(__i) + __mu;
|
---|
256 | const _Tp __del = __c * (__ff + __r * __q);
|
---|
257 | __sum += __del;
|
---|
258 | const _Tp __del1 = __c * __p - __i * __del;
|
---|
259 | __sum1 += __del1;
|
---|
260 | if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
|
---|
261 | break;
|
---|
262 | }
|
---|
263 | if ( __i > __max_iter )
|
---|
264 | std::__throw_runtime_error(__N("Bessel y series failed to converge "
|
---|
265 | "in __bessel_jn."));
|
---|
266 | __Nmu = -__sum;
|
---|
267 | __Nnu1 = -__sum1 * __xi2;
|
---|
268 | __Npmu = __mu * __xi * __Nmu - __Nnu1;
|
---|
269 | __Jmu = __w / (__Npmu - __f * __Nmu);
|
---|
270 | }
|
---|
271 | else
|
---|
272 | {
|
---|
273 | _Tp __a = _Tp(0.25L) - __mu2;
|
---|
274 | _Tp __q = _Tp(1);
|
---|
275 | _Tp __p = -__xi / _Tp(2);
|
---|
276 | _Tp __br = _Tp(2) * __x;
|
---|
277 | _Tp __bi = _Tp(2);
|
---|
278 | _Tp __fact = __a * __xi / (__p * __p + __q * __q);
|
---|
279 | _Tp __cr = __br + __q * __fact;
|
---|
280 | _Tp __ci = __bi + __p * __fact;
|
---|
281 | _Tp __den = __br * __br + __bi * __bi;
|
---|
282 | _Tp __dr = __br / __den;
|
---|
283 | _Tp __di = -__bi / __den;
|
---|
284 | _Tp __dlr = __cr * __dr - __ci * __di;
|
---|
285 | _Tp __dli = __cr * __di + __ci * __dr;
|
---|
286 | _Tp __temp = __p * __dlr - __q * __dli;
|
---|
287 | __q = __p * __dli + __q * __dlr;
|
---|
288 | __p = __temp;
|
---|
289 | int __i;
|
---|
290 | for (__i = 2; __i <= __max_iter; ++__i)
|
---|
291 | {
|
---|
292 | __a += _Tp(2 * (__i - 1));
|
---|
293 | __bi += _Tp(2);
|
---|
294 | __dr = __a * __dr + __br;
|
---|
295 | __di = __a * __di + __bi;
|
---|
296 | if (std::abs(__dr) + std::abs(__di) < __fp_min)
|
---|
297 | __dr = __fp_min;
|
---|
298 | __fact = __a / (__cr * __cr + __ci * __ci);
|
---|
299 | __cr = __br + __cr * __fact;
|
---|
300 | __ci = __bi - __ci * __fact;
|
---|
301 | if (std::abs(__cr) + std::abs(__ci) < __fp_min)
|
---|
302 | __cr = __fp_min;
|
---|
303 | __den = __dr * __dr + __di * __di;
|
---|
304 | __dr /= __den;
|
---|
305 | __di /= -__den;
|
---|
306 | __dlr = __cr * __dr - __ci * __di;
|
---|
307 | __dli = __cr * __di + __ci * __dr;
|
---|
308 | __temp = __p * __dlr - __q * __dli;
|
---|
309 | __q = __p * __dli + __q * __dlr;
|
---|
310 | __p = __temp;
|
---|
311 | if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
|
---|
312 | break;
|
---|
313 | }
|
---|
314 | if (__i > __max_iter)
|
---|
315 | std::__throw_runtime_error(__N("Lentz's method failed "
|
---|
316 | "in __bessel_jn."));
|
---|
317 | const _Tp __gam = (__p - __f) / __q;
|
---|
318 | __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
|
---|
319 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
320 | __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
|
---|
321 | #else
|
---|
322 | if (__Jmu * __Jnul < _Tp(0))
|
---|
323 | __Jmu = -__Jmu;
|
---|
324 | #endif
|
---|
325 | __Nmu = __gam * __Jmu;
|
---|
326 | __Npmu = (__p + __q / __gam) * __Nmu;
|
---|
327 | __Nnu1 = __mu * __xi * __Nmu - __Npmu;
|
---|
328 | }
|
---|
329 | __fact = __Jmu / __Jnul;
|
---|
330 | __Jnu = __fact * __Jnul1;
|
---|
331 | __Jpnu = __fact * __Jpnu1;
|
---|
332 | for (__i = 1; __i <= __nl; ++__i)
|
---|
333 | {
|
---|
334 | const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
|
---|
335 | __Nmu = __Nnu1;
|
---|
336 | __Nnu1 = __Nnutemp;
|
---|
337 | }
|
---|
338 | __Nnu = __Nmu;
|
---|
339 | __Npnu = __nu * __xi * __Nmu - __Nnu1;
|
---|
340 |
|
---|
341 | return;
|
---|
342 | }
|
---|
343 |
|
---|
344 |
|
---|
345 | /**
|
---|
346 | * @brief This routine computes the asymptotic cylindrical Bessel
|
---|
347 | * and Neumann functions of order nu: \f$ J_{\nu} \f$,
|
---|
348 | * \f$ N_{\nu} \f$.
|
---|
349 | *
|
---|
350 | * References:
|
---|
351 | * (1) Handbook of Mathematical Functions,
|
---|
352 | * ed. Milton Abramowitz and Irene A. Stegun,
|
---|
353 | * Dover Publications,
|
---|
354 | * Section 9 p. 364, Equations 9.2.5-9.2.10
|
---|
355 | *
|
---|
356 | * @param __nu The order of the Bessel functions.
|
---|
357 | * @param __x The argument of the Bessel functions.
|
---|
358 | * @param __Jnu The output Bessel function of the first kind.
|
---|
359 | * @param __Nnu The output Neumann function (Bessel function of the second kind).
|
---|
360 | */
|
---|
361 | template <typename _Tp>
|
---|
362 | void
|
---|
363 | __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
|
---|
364 | {
|
---|
365 | const _Tp __mu = _Tp(4) * __nu * __nu;
|
---|
366 | const _Tp __8x = _Tp(8) * __x;
|
---|
367 |
|
---|
368 | _Tp __P = _Tp(0);
|
---|
369 | _Tp __Q = _Tp(0);
|
---|
370 |
|
---|
371 | _Tp __k = _Tp(0);
|
---|
372 | _Tp __term = _Tp(1);
|
---|
373 |
|
---|
374 | int __epsP = 0;
|
---|
375 | int __epsQ = 0;
|
---|
376 |
|
---|
377 | _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
378 |
|
---|
379 | do
|
---|
380 | {
|
---|
381 | __term *= (__k == 0
|
---|
382 | ? _Tp(1)
|
---|
383 | : -(__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x));
|
---|
384 |
|
---|
385 | __epsP = std::abs(__term) < __eps * std::abs(__P);
|
---|
386 | __P += __term;
|
---|
387 |
|
---|
388 | __k++;
|
---|
389 |
|
---|
390 | __term *= (__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x);
|
---|
391 | __epsQ = std::abs(__term) < __eps * std::abs(__Q);
|
---|
392 | __Q += __term;
|
---|
393 |
|
---|
394 | if (__epsP && __epsQ && __k > (__nu / 2.))
|
---|
395 | break;
|
---|
396 |
|
---|
397 | __k++;
|
---|
398 | }
|
---|
399 | while (__k < 1000);
|
---|
400 |
|
---|
401 | const _Tp __chi = __x - (__nu + _Tp(0.5L))
|
---|
402 | * __numeric_constants<_Tp>::__pi_2();
|
---|
403 |
|
---|
404 | const _Tp __c = std::cos(__chi);
|
---|
405 | const _Tp __s = std::sin(__chi);
|
---|
406 |
|
---|
407 | const _Tp __coef = std::sqrt(_Tp(2)
|
---|
408 | / (__numeric_constants<_Tp>::__pi() * __x));
|
---|
409 |
|
---|
410 | __Jnu = __coef * (__c * __P - __s * __Q);
|
---|
411 | __Nnu = __coef * (__s * __P + __c * __Q);
|
---|
412 |
|
---|
413 | return;
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | /**
|
---|
418 | * @brief This routine returns the cylindrical Bessel functions
|
---|
419 | * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
|
---|
420 | * by series expansion.
|
---|
421 | *
|
---|
422 | * The modified cylindrical Bessel function is:
|
---|
423 | * @f[
|
---|
424 | * Z_{\nu}(x) = \sum_{k=0}^{\infty}
|
---|
425 | * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
|
---|
426 | * @f]
|
---|
427 | * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
|
---|
428 | * \f$ Z = I \f$ or \f$ J \f$ respectively.
|
---|
429 | *
|
---|
430 | * See Abramowitz & Stegun, 9.1.10
|
---|
431 | * Abramowitz & Stegun, 9.6.7
|
---|
432 | * (1) Handbook of Mathematical Functions,
|
---|
433 | * ed. Milton Abramowitz and Irene A. Stegun,
|
---|
434 | * Dover Publications,
|
---|
435 | * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
|
---|
436 | *
|
---|
437 | * @param __nu The order of the Bessel function.
|
---|
438 | * @param __x The argument of the Bessel function.
|
---|
439 | * @param __sgn The sign of the alternate terms
|
---|
440 | * -1 for the Bessel function of the first kind.
|
---|
441 | * +1 for the modified Bessel function of the first kind.
|
---|
442 | * @return The output Bessel function.
|
---|
443 | */
|
---|
444 | template <typename _Tp>
|
---|
445 | _Tp
|
---|
446 | __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
|
---|
447 | unsigned int __max_iter)
|
---|
448 | {
|
---|
449 | if (__x == _Tp(0))
|
---|
450 | return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
|
---|
451 |
|
---|
452 | const _Tp __x2 = __x / _Tp(2);
|
---|
453 | _Tp __fact = __nu * std::log(__x2);
|
---|
454 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
455 | __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
|
---|
456 | #else
|
---|
457 | __fact -= __log_gamma(__nu + _Tp(1));
|
---|
458 | #endif
|
---|
459 | __fact = std::exp(__fact);
|
---|
460 | const _Tp __xx4 = __sgn * __x2 * __x2;
|
---|
461 | _Tp __Jn = _Tp(1);
|
---|
462 | _Tp __term = _Tp(1);
|
---|
463 |
|
---|
464 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
465 | {
|
---|
466 | __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
|
---|
467 | __Jn += __term;
|
---|
468 | if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
|
---|
469 | break;
|
---|
470 | }
|
---|
471 |
|
---|
472 | return __fact * __Jn;
|
---|
473 | }
|
---|
474 |
|
---|
475 |
|
---|
476 | /**
|
---|
477 | * @brief Return the Bessel function of order \f$ \nu \f$:
|
---|
478 | * \f$ J_{\nu}(x) \f$.
|
---|
479 | *
|
---|
480 | * The cylindrical Bessel function is:
|
---|
481 | * @f[
|
---|
482 | * J_{\nu}(x) = \sum_{k=0}^{\infty}
|
---|
483 | * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
|
---|
484 | * @f]
|
---|
485 | *
|
---|
486 | * @param __nu The order of the Bessel function.
|
---|
487 | * @param __x The argument of the Bessel function.
|
---|
488 | * @return The output Bessel function.
|
---|
489 | */
|
---|
490 | template<typename _Tp>
|
---|
491 | _Tp
|
---|
492 | __cyl_bessel_j(_Tp __nu, _Tp __x)
|
---|
493 | {
|
---|
494 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
495 | std::__throw_domain_error(__N("Bad argument "
|
---|
496 | "in __cyl_bessel_j."));
|
---|
497 | else if (__isnan(__nu) || __isnan(__x))
|
---|
498 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
499 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
|
---|
500 | return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
|
---|
501 | else if (__x > _Tp(1000))
|
---|
502 | {
|
---|
503 | _Tp __J_nu, __N_nu;
|
---|
504 | __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
|
---|
505 | return __J_nu;
|
---|
506 | }
|
---|
507 | else
|
---|
508 | {
|
---|
509 | _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
|
---|
510 | __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
511 | return __J_nu;
|
---|
512 | }
|
---|
513 | }
|
---|
514 |
|
---|
515 |
|
---|
516 | /**
|
---|
517 | * @brief Return the Neumann function of order \f$ \nu \f$:
|
---|
518 | * \f$ N_{\nu}(x) \f$.
|
---|
519 | *
|
---|
520 | * The Neumann function is defined by:
|
---|
521 | * @f[
|
---|
522 | * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
|
---|
523 | * {\sin \nu\pi}
|
---|
524 | * @f]
|
---|
525 | * where for integral \f$ \nu = n \f$ a limit is taken:
|
---|
526 | * \f$ lim_{\nu \to n} \f$.
|
---|
527 | *
|
---|
528 | * @param __nu The order of the Neumann function.
|
---|
529 | * @param __x The argument of the Neumann function.
|
---|
530 | * @return The output Neumann function.
|
---|
531 | */
|
---|
532 | template<typename _Tp>
|
---|
533 | _Tp
|
---|
534 | __cyl_neumann_n(_Tp __nu, _Tp __x)
|
---|
535 | {
|
---|
536 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
537 | std::__throw_domain_error(__N("Bad argument "
|
---|
538 | "in __cyl_neumann_n."));
|
---|
539 | else if (__isnan(__nu) || __isnan(__x))
|
---|
540 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
541 | else if (__x > _Tp(1000))
|
---|
542 | {
|
---|
543 | _Tp __J_nu, __N_nu;
|
---|
544 | __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
|
---|
545 | return __N_nu;
|
---|
546 | }
|
---|
547 | else
|
---|
548 | {
|
---|
549 | _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
|
---|
550 | __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
551 | return __N_nu;
|
---|
552 | }
|
---|
553 | }
|
---|
554 |
|
---|
555 |
|
---|
556 | /**
|
---|
557 | * @brief Compute the spherical Bessel @f$ j_n(x) @f$
|
---|
558 | * and Neumann @f$ n_n(x) @f$ functions and their first
|
---|
559 | * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
|
---|
560 | * respectively.
|
---|
561 | *
|
---|
562 | * @param __n The order of the spherical Bessel function.
|
---|
563 | * @param __x The argument of the spherical Bessel function.
|
---|
564 | * @param __j_n The output spherical Bessel function.
|
---|
565 | * @param __n_n The output spherical Neumann function.
|
---|
566 | * @param __jp_n The output derivative of the spherical Bessel function.
|
---|
567 | * @param __np_n The output derivative of the spherical Neumann function.
|
---|
568 | */
|
---|
569 | template <typename _Tp>
|
---|
570 | void
|
---|
571 | __sph_bessel_jn(unsigned int __n, _Tp __x,
|
---|
572 | _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
|
---|
573 | {
|
---|
574 | const _Tp __nu = _Tp(__n) + _Tp(0.5L);
|
---|
575 |
|
---|
576 | _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
|
---|
577 | __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
578 |
|
---|
579 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
|
---|
580 | / std::sqrt(__x);
|
---|
581 |
|
---|
582 | __j_n = __factor * __J_nu;
|
---|
583 | __n_n = __factor * __N_nu;
|
---|
584 | __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
|
---|
585 | __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
|
---|
586 |
|
---|
587 | return;
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 | /**
|
---|
592 | * @brief Return the spherical Bessel function
|
---|
593 | * @f$ j_n(x) @f$ of order n.
|
---|
594 | *
|
---|
595 | * The spherical Bessel function is defined by:
|
---|
596 | * @f[
|
---|
597 | * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
|
---|
598 | * @f]
|
---|
599 | *
|
---|
600 | * @param __n The order of the spherical Bessel function.
|
---|
601 | * @param __x The argument of the spherical Bessel function.
|
---|
602 | * @return The output spherical Bessel function.
|
---|
603 | */
|
---|
604 | template <typename _Tp>
|
---|
605 | _Tp
|
---|
606 | __sph_bessel(unsigned int __n, _Tp __x)
|
---|
607 | {
|
---|
608 | if (__x < _Tp(0))
|
---|
609 | std::__throw_domain_error(__N("Bad argument "
|
---|
610 | "in __sph_bessel."));
|
---|
611 | else if (__isnan(__x))
|
---|
612 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
613 | else if (__x == _Tp(0))
|
---|
614 | {
|
---|
615 | if (__n == 0)
|
---|
616 | return _Tp(1);
|
---|
617 | else
|
---|
618 | return _Tp(0);
|
---|
619 | }
|
---|
620 | else
|
---|
621 | {
|
---|
622 | _Tp __j_n, __n_n, __jp_n, __np_n;
|
---|
623 | __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
|
---|
624 | return __j_n;
|
---|
625 | }
|
---|
626 | }
|
---|
627 |
|
---|
628 |
|
---|
629 | /**
|
---|
630 | * @brief Return the spherical Neumann function
|
---|
631 | * @f$ n_n(x) @f$.
|
---|
632 | *
|
---|
633 | * The spherical Neumann function is defined by:
|
---|
634 | * @f[
|
---|
635 | * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
|
---|
636 | * @f]
|
---|
637 | *
|
---|
638 | * @param __n The order of the spherical Neumann function.
|
---|
639 | * @param __x The argument of the spherical Neumann function.
|
---|
640 | * @return The output spherical Neumann function.
|
---|
641 | */
|
---|
642 | template <typename _Tp>
|
---|
643 | _Tp
|
---|
644 | __sph_neumann(unsigned int __n, _Tp __x)
|
---|
645 | {
|
---|
646 | if (__x < _Tp(0))
|
---|
647 | std::__throw_domain_error(__N("Bad argument "
|
---|
648 | "in __sph_neumann."));
|
---|
649 | else if (__isnan(__x))
|
---|
650 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
651 | else if (__x == _Tp(0))
|
---|
652 | return -std::numeric_limits<_Tp>::infinity();
|
---|
653 | else
|
---|
654 | {
|
---|
655 | _Tp __j_n, __n_n, __jp_n, __np_n;
|
---|
656 | __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
|
---|
657 | return __n_n;
|
---|
658 | }
|
---|
659 | }
|
---|
660 | } // namespace __detail
|
---|
661 | #undef _GLIBCXX_MATH_NS
|
---|
662 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
663 | } // namespace tr1
|
---|
664 | #endif
|
---|
665 |
|
---|
666 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
667 | }
|
---|
668 |
|
---|
669 | #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
|
---|