1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/beta_function.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | // (1) Handbook of Mathematical Functions,
|
---|
36 | // ed. Milton Abramowitz and Irene A. Stegun,
|
---|
37 | // Dover Publications,
|
---|
38 | // Section 6, pp. 253-266
|
---|
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
42 | // 2nd ed, pp. 213-216
|
---|
43 | // (4) Gamma, Exploring Euler's Constant, Julian Havil,
|
---|
44 | // Princeton, 2003.
|
---|
45 |
|
---|
46 | #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
|
---|
47 | #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
|
---|
48 |
|
---|
49 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
50 | {
|
---|
51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
52 |
|
---|
53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
54 | # define _GLIBCXX_MATH_NS ::std
|
---|
55 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
56 | namespace tr1
|
---|
57 | {
|
---|
58 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
59 | #else
|
---|
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
61 | #endif
|
---|
62 | // [5.2] Special functions
|
---|
63 |
|
---|
64 | // Implementation-space details.
|
---|
65 | namespace __detail
|
---|
66 | {
|
---|
67 | /**
|
---|
68 | * @brief Return the beta function: \f$B(x,y)\f$.
|
---|
69 | *
|
---|
70 | * The beta function is defined by
|
---|
71 | * @f[
|
---|
72 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
---|
73 | * @f]
|
---|
74 | *
|
---|
75 | * @param __x The first argument of the beta function.
|
---|
76 | * @param __y The second argument of the beta function.
|
---|
77 | * @return The beta function.
|
---|
78 | */
|
---|
79 | template<typename _Tp>
|
---|
80 | _Tp
|
---|
81 | __beta_gamma(_Tp __x, _Tp __y)
|
---|
82 | {
|
---|
83 |
|
---|
84 | _Tp __bet;
|
---|
85 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
86 | if (__x > __y)
|
---|
87 | {
|
---|
88 | __bet = _GLIBCXX_MATH_NS::tgamma(__x)
|
---|
89 | / _GLIBCXX_MATH_NS::tgamma(__x + __y);
|
---|
90 | __bet *= _GLIBCXX_MATH_NS::tgamma(__y);
|
---|
91 | }
|
---|
92 | else
|
---|
93 | {
|
---|
94 | __bet = _GLIBCXX_MATH_NS::tgamma(__y)
|
---|
95 | / _GLIBCXX_MATH_NS::tgamma(__x + __y);
|
---|
96 | __bet *= _GLIBCXX_MATH_NS::tgamma(__x);
|
---|
97 | }
|
---|
98 | #else
|
---|
99 | if (__x > __y)
|
---|
100 | {
|
---|
101 | __bet = __gamma(__x) / __gamma(__x + __y);
|
---|
102 | __bet *= __gamma(__y);
|
---|
103 | }
|
---|
104 | else
|
---|
105 | {
|
---|
106 | __bet = __gamma(__y) / __gamma(__x + __y);
|
---|
107 | __bet *= __gamma(__x);
|
---|
108 | }
|
---|
109 | #endif
|
---|
110 |
|
---|
111 | return __bet;
|
---|
112 | }
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * @brief Return the beta function \f$B(x,y)\f$ using
|
---|
116 | * the log gamma functions.
|
---|
117 | *
|
---|
118 | * The beta function is defined by
|
---|
119 | * @f[
|
---|
120 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
---|
121 | * @f]
|
---|
122 | *
|
---|
123 | * @param __x The first argument of the beta function.
|
---|
124 | * @param __y The second argument of the beta function.
|
---|
125 | * @return The beta function.
|
---|
126 | */
|
---|
127 | template<typename _Tp>
|
---|
128 | _Tp
|
---|
129 | __beta_lgamma(_Tp __x, _Tp __y)
|
---|
130 | {
|
---|
131 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
132 | _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x)
|
---|
133 | + _GLIBCXX_MATH_NS::lgamma(__y)
|
---|
134 | - _GLIBCXX_MATH_NS::lgamma(__x + __y);
|
---|
135 | #else
|
---|
136 | _Tp __bet = __log_gamma(__x)
|
---|
137 | + __log_gamma(__y)
|
---|
138 | - __log_gamma(__x + __y);
|
---|
139 | #endif
|
---|
140 | __bet = std::exp(__bet);
|
---|
141 | return __bet;
|
---|
142 | }
|
---|
143 |
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * @brief Return the beta function \f$B(x,y)\f$ using
|
---|
147 | * the product form.
|
---|
148 | *
|
---|
149 | * The beta function is defined by
|
---|
150 | * @f[
|
---|
151 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
---|
152 | * @f]
|
---|
153 | *
|
---|
154 | * @param __x The first argument of the beta function.
|
---|
155 | * @param __y The second argument of the beta function.
|
---|
156 | * @return The beta function.
|
---|
157 | */
|
---|
158 | template<typename _Tp>
|
---|
159 | _Tp
|
---|
160 | __beta_product(_Tp __x, _Tp __y)
|
---|
161 | {
|
---|
162 |
|
---|
163 | _Tp __bet = (__x + __y) / (__x * __y);
|
---|
164 |
|
---|
165 | unsigned int __max_iter = 1000000;
|
---|
166 | for (unsigned int __k = 1; __k < __max_iter; ++__k)
|
---|
167 | {
|
---|
168 | _Tp __term = (_Tp(1) + (__x + __y) / __k)
|
---|
169 | / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
|
---|
170 | __bet *= __term;
|
---|
171 | }
|
---|
172 |
|
---|
173 | return __bet;
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | /**
|
---|
178 | * @brief Return the beta function \f$ B(x,y) \f$.
|
---|
179 | *
|
---|
180 | * The beta function is defined by
|
---|
181 | * @f[
|
---|
182 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
---|
183 | * @f]
|
---|
184 | *
|
---|
185 | * @param __x The first argument of the beta function.
|
---|
186 | * @param __y The second argument of the beta function.
|
---|
187 | * @return The beta function.
|
---|
188 | */
|
---|
189 | template<typename _Tp>
|
---|
190 | inline _Tp
|
---|
191 | __beta(_Tp __x, _Tp __y)
|
---|
192 | {
|
---|
193 | if (__isnan(__x) || __isnan(__y))
|
---|
194 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
195 | else
|
---|
196 | return __beta_lgamma(__x, __y);
|
---|
197 | }
|
---|
198 | } // namespace __detail
|
---|
199 | #undef _GLIBCXX_MATH_NS
|
---|
200 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
201 | } // namespace tr1
|
---|
202 | #endif
|
---|
203 |
|
---|
204 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
205 | }
|
---|
206 |
|
---|
207 | #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC
|
---|