1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/ell_integral.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | // (1) B. C. Carlson Numer. Math. 33, 1 (1979)
|
---|
36 | // (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
---|
37 | // (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
38 | // (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
|
---|
39 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press
|
---|
40 | // (1992), pp. 261-269
|
---|
41 |
|
---|
42 | #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
---|
43 | #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
|
---|
44 |
|
---|
45 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
46 | {
|
---|
47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
48 |
|
---|
49 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
50 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
51 | namespace tr1
|
---|
52 | {
|
---|
53 | #else
|
---|
54 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
55 | #endif
|
---|
56 | // [5.2] Special functions
|
---|
57 |
|
---|
58 | // Implementation-space details.
|
---|
59 | namespace __detail
|
---|
60 | {
|
---|
61 | /**
|
---|
62 | * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
|
---|
63 | * of the first kind.
|
---|
64 | *
|
---|
65 | * The Carlson elliptic function of the first kind is defined by:
|
---|
66 | * @f[
|
---|
67 | * R_F(x,y,z) = \frac{1}{2} \int_0^\infty
|
---|
68 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
|
---|
69 | * @f]
|
---|
70 | *
|
---|
71 | * @param __x The first of three symmetric arguments.
|
---|
72 | * @param __y The second of three symmetric arguments.
|
---|
73 | * @param __z The third of three symmetric arguments.
|
---|
74 | * @return The Carlson elliptic function of the first kind.
|
---|
75 | */
|
---|
76 | template<typename _Tp>
|
---|
77 | _Tp
|
---|
78 | __ellint_rf(_Tp __x, _Tp __y, _Tp __z)
|
---|
79 | {
|
---|
80 | const _Tp __min = std::numeric_limits<_Tp>::min();
|
---|
81 | const _Tp __lolim = _Tp(5) * __min;
|
---|
82 |
|
---|
83 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
---|
84 | std::__throw_domain_error(__N("Argument less than zero "
|
---|
85 | "in __ellint_rf."));
|
---|
86 | else if (__x + __y < __lolim || __x + __z < __lolim
|
---|
87 | || __y + __z < __lolim)
|
---|
88 | std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
|
---|
89 | else
|
---|
90 | {
|
---|
91 | const _Tp __c0 = _Tp(1) / _Tp(4);
|
---|
92 | const _Tp __c1 = _Tp(1) / _Tp(24);
|
---|
93 | const _Tp __c2 = _Tp(1) / _Tp(10);
|
---|
94 | const _Tp __c3 = _Tp(3) / _Tp(44);
|
---|
95 | const _Tp __c4 = _Tp(1) / _Tp(14);
|
---|
96 |
|
---|
97 | _Tp __xn = __x;
|
---|
98 | _Tp __yn = __y;
|
---|
99 | _Tp __zn = __z;
|
---|
100 |
|
---|
101 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
102 | const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
|
---|
103 | _Tp __mu;
|
---|
104 | _Tp __xndev, __yndev, __zndev;
|
---|
105 |
|
---|
106 | const unsigned int __max_iter = 100;
|
---|
107 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
---|
108 | {
|
---|
109 | __mu = (__xn + __yn + __zn) / _Tp(3);
|
---|
110 | __xndev = 2 - (__mu + __xn) / __mu;
|
---|
111 | __yndev = 2 - (__mu + __yn) / __mu;
|
---|
112 | __zndev = 2 - (__mu + __zn) / __mu;
|
---|
113 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
---|
114 | __epsilon = std::max(__epsilon, std::abs(__zndev));
|
---|
115 | if (__epsilon < __errtol)
|
---|
116 | break;
|
---|
117 | const _Tp __xnroot = std::sqrt(__xn);
|
---|
118 | const _Tp __ynroot = std::sqrt(__yn);
|
---|
119 | const _Tp __znroot = std::sqrt(__zn);
|
---|
120 | const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
---|
121 | + __ynroot * __znroot;
|
---|
122 | __xn = __c0 * (__xn + __lambda);
|
---|
123 | __yn = __c0 * (__yn + __lambda);
|
---|
124 | __zn = __c0 * (__zn + __lambda);
|
---|
125 | }
|
---|
126 |
|
---|
127 | const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
|
---|
128 | const _Tp __e3 = __xndev * __yndev * __zndev;
|
---|
129 | const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
|
---|
130 | + __c4 * __e3;
|
---|
131 |
|
---|
132 | return __s / std::sqrt(__mu);
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * @brief Return the complete elliptic integral of the first kind
|
---|
139 | * @f$ K(k) @f$ by series expansion.
|
---|
140 | *
|
---|
141 | * The complete elliptic integral of the first kind is defined as
|
---|
142 | * @f[
|
---|
143 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
---|
144 | * {\sqrt{1 - k^2sin^2\theta}}
|
---|
145 | * @f]
|
---|
146 | *
|
---|
147 | * This routine is not bad as long as |k| is somewhat smaller than 1
|
---|
148 | * but is not is good as the Carlson elliptic integral formulation.
|
---|
149 | *
|
---|
150 | * @param __k The argument of the complete elliptic function.
|
---|
151 | * @return The complete elliptic function of the first kind.
|
---|
152 | */
|
---|
153 | template<typename _Tp>
|
---|
154 | _Tp
|
---|
155 | __comp_ellint_1_series(_Tp __k)
|
---|
156 | {
|
---|
157 |
|
---|
158 | const _Tp __kk = __k * __k;
|
---|
159 |
|
---|
160 | _Tp __term = __kk / _Tp(4);
|
---|
161 | _Tp __sum = _Tp(1) + __term;
|
---|
162 |
|
---|
163 | const unsigned int __max_iter = 1000;
|
---|
164 | for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
---|
165 | {
|
---|
166 | __term *= (2 * __i - 1) * __kk / (2 * __i);
|
---|
167 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
168 | break;
|
---|
169 | __sum += __term;
|
---|
170 | }
|
---|
171 |
|
---|
172 | return __numeric_constants<_Tp>::__pi_2() * __sum;
|
---|
173 | }
|
---|
174 |
|
---|
175 |
|
---|
176 | /**
|
---|
177 | * @brief Return the complete elliptic integral of the first kind
|
---|
178 | * @f$ K(k) @f$ using the Carlson formulation.
|
---|
179 | *
|
---|
180 | * The complete elliptic integral of the first kind is defined as
|
---|
181 | * @f[
|
---|
182 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
|
---|
183 | * {\sqrt{1 - k^2 sin^2\theta}}
|
---|
184 | * @f]
|
---|
185 | * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
|
---|
186 | * first kind.
|
---|
187 | *
|
---|
188 | * @param __k The argument of the complete elliptic function.
|
---|
189 | * @return The complete elliptic function of the first kind.
|
---|
190 | */
|
---|
191 | template<typename _Tp>
|
---|
192 | _Tp
|
---|
193 | __comp_ellint_1(_Tp __k)
|
---|
194 | {
|
---|
195 |
|
---|
196 | if (__isnan(__k))
|
---|
197 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
198 | else if (std::abs(__k) >= _Tp(1))
|
---|
199 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
200 | else
|
---|
201 | return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * @brief Return the incomplete elliptic integral of the first kind
|
---|
207 | * @f$ F(k,\phi) @f$ using the Carlson formulation.
|
---|
208 | *
|
---|
209 | * The incomplete elliptic integral of the first kind is defined as
|
---|
210 | * @f[
|
---|
211 | * F(k,\phi) = \int_0^{\phi}\frac{d\theta}
|
---|
212 | * {\sqrt{1 - k^2 sin^2\theta}}
|
---|
213 | * @f]
|
---|
214 | *
|
---|
215 | * @param __k The argument of the elliptic function.
|
---|
216 | * @param __phi The integral limit argument of the elliptic function.
|
---|
217 | * @return The elliptic function of the first kind.
|
---|
218 | */
|
---|
219 | template<typename _Tp>
|
---|
220 | _Tp
|
---|
221 | __ellint_1(_Tp __k, _Tp __phi)
|
---|
222 | {
|
---|
223 |
|
---|
224 | if (__isnan(__k) || __isnan(__phi))
|
---|
225 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
226 | else if (std::abs(__k) > _Tp(1))
|
---|
227 | std::__throw_domain_error(__N("Bad argument in __ellint_1."));
|
---|
228 | else
|
---|
229 | {
|
---|
230 | // Reduce phi to -pi/2 < phi < +pi/2.
|
---|
231 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
---|
232 | + _Tp(0.5L));
|
---|
233 | const _Tp __phi_red = __phi
|
---|
234 | - __n * __numeric_constants<_Tp>::__pi();
|
---|
235 |
|
---|
236 | const _Tp __s = std::sin(__phi_red);
|
---|
237 | const _Tp __c = std::cos(__phi_red);
|
---|
238 |
|
---|
239 | const _Tp __F = __s
|
---|
240 | * __ellint_rf(__c * __c,
|
---|
241 | _Tp(1) - __k * __k * __s * __s, _Tp(1));
|
---|
242 |
|
---|
243 | if (__n == 0)
|
---|
244 | return __F;
|
---|
245 | else
|
---|
246 | return __F + _Tp(2) * __n * __comp_ellint_1(__k);
|
---|
247 | }
|
---|
248 | }
|
---|
249 |
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * @brief Return the complete elliptic integral of the second kind
|
---|
253 | * @f$ E(k) @f$ by series expansion.
|
---|
254 | *
|
---|
255 | * The complete elliptic integral of the second kind is defined as
|
---|
256 | * @f[
|
---|
257 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
---|
258 | * @f]
|
---|
259 | *
|
---|
260 | * This routine is not bad as long as |k| is somewhat smaller than 1
|
---|
261 | * but is not is good as the Carlson elliptic integral formulation.
|
---|
262 | *
|
---|
263 | * @param __k The argument of the complete elliptic function.
|
---|
264 | * @return The complete elliptic function of the second kind.
|
---|
265 | */
|
---|
266 | template<typename _Tp>
|
---|
267 | _Tp
|
---|
268 | __comp_ellint_2_series(_Tp __k)
|
---|
269 | {
|
---|
270 |
|
---|
271 | const _Tp __kk = __k * __k;
|
---|
272 |
|
---|
273 | _Tp __term = __kk;
|
---|
274 | _Tp __sum = __term;
|
---|
275 |
|
---|
276 | const unsigned int __max_iter = 1000;
|
---|
277 | for (unsigned int __i = 2; __i < __max_iter; ++__i)
|
---|
278 | {
|
---|
279 | const _Tp __i2m = 2 * __i - 1;
|
---|
280 | const _Tp __i2 = 2 * __i;
|
---|
281 | __term *= __i2m * __i2m * __kk / (__i2 * __i2);
|
---|
282 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
283 | break;
|
---|
284 | __sum += __term / __i2m;
|
---|
285 | }
|
---|
286 |
|
---|
287 | return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
|
---|
288 | }
|
---|
289 |
|
---|
290 |
|
---|
291 | /**
|
---|
292 | * @brief Return the Carlson elliptic function of the second kind
|
---|
293 | * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
|
---|
294 | * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
|
---|
295 | * of the third kind.
|
---|
296 | *
|
---|
297 | * The Carlson elliptic function of the second kind is defined by:
|
---|
298 | * @f[
|
---|
299 | * R_D(x,y,z) = \frac{3}{2} \int_0^\infty
|
---|
300 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
|
---|
301 | * @f]
|
---|
302 | *
|
---|
303 | * Based on Carlson's algorithms:
|
---|
304 | * - B. C. Carlson Numer. Math. 33, 1 (1979)
|
---|
305 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
---|
306 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
---|
307 | * by Press, Teukolsky, Vetterling, Flannery (1992)
|
---|
308 | *
|
---|
309 | * @param __x The first of two symmetric arguments.
|
---|
310 | * @param __y The second of two symmetric arguments.
|
---|
311 | * @param __z The third argument.
|
---|
312 | * @return The Carlson elliptic function of the second kind.
|
---|
313 | */
|
---|
314 | template<typename _Tp>
|
---|
315 | _Tp
|
---|
316 | __ellint_rd(_Tp __x, _Tp __y, _Tp __z)
|
---|
317 | {
|
---|
318 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
319 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
---|
320 | const _Tp __max = std::numeric_limits<_Tp>::max();
|
---|
321 | const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
|
---|
322 |
|
---|
323 | if (__x < _Tp(0) || __y < _Tp(0))
|
---|
324 | std::__throw_domain_error(__N("Argument less than zero "
|
---|
325 | "in __ellint_rd."));
|
---|
326 | else if (__x + __y < __lolim || __z < __lolim)
|
---|
327 | std::__throw_domain_error(__N("Argument too small "
|
---|
328 | "in __ellint_rd."));
|
---|
329 | else
|
---|
330 | {
|
---|
331 | const _Tp __c0 = _Tp(1) / _Tp(4);
|
---|
332 | const _Tp __c1 = _Tp(3) / _Tp(14);
|
---|
333 | const _Tp __c2 = _Tp(1) / _Tp(6);
|
---|
334 | const _Tp __c3 = _Tp(9) / _Tp(22);
|
---|
335 | const _Tp __c4 = _Tp(3) / _Tp(26);
|
---|
336 |
|
---|
337 | _Tp __xn = __x;
|
---|
338 | _Tp __yn = __y;
|
---|
339 | _Tp __zn = __z;
|
---|
340 | _Tp __sigma = _Tp(0);
|
---|
341 | _Tp __power4 = _Tp(1);
|
---|
342 |
|
---|
343 | _Tp __mu;
|
---|
344 | _Tp __xndev, __yndev, __zndev;
|
---|
345 |
|
---|
346 | const unsigned int __max_iter = 100;
|
---|
347 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
---|
348 | {
|
---|
349 | __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
|
---|
350 | __xndev = (__mu - __xn) / __mu;
|
---|
351 | __yndev = (__mu - __yn) / __mu;
|
---|
352 | __zndev = (__mu - __zn) / __mu;
|
---|
353 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
---|
354 | __epsilon = std::max(__epsilon, std::abs(__zndev));
|
---|
355 | if (__epsilon < __errtol)
|
---|
356 | break;
|
---|
357 | _Tp __xnroot = std::sqrt(__xn);
|
---|
358 | _Tp __ynroot = std::sqrt(__yn);
|
---|
359 | _Tp __znroot = std::sqrt(__zn);
|
---|
360 | _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
---|
361 | + __ynroot * __znroot;
|
---|
362 | __sigma += __power4 / (__znroot * (__zn + __lambda));
|
---|
363 | __power4 *= __c0;
|
---|
364 | __xn = __c0 * (__xn + __lambda);
|
---|
365 | __yn = __c0 * (__yn + __lambda);
|
---|
366 | __zn = __c0 * (__zn + __lambda);
|
---|
367 | }
|
---|
368 |
|
---|
369 | _Tp __ea = __xndev * __yndev;
|
---|
370 | _Tp __eb = __zndev * __zndev;
|
---|
371 | _Tp __ec = __ea - __eb;
|
---|
372 | _Tp __ed = __ea - _Tp(6) * __eb;
|
---|
373 | _Tp __ef = __ed + __ec + __ec;
|
---|
374 | _Tp __s1 = __ed * (-__c1 + __c3 * __ed
|
---|
375 | / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
|
---|
376 | / _Tp(2));
|
---|
377 | _Tp __s2 = __zndev
|
---|
378 | * (__c2 * __ef
|
---|
379 | + __zndev * (-__c3 * __ec - __zndev * __c4 - __ea));
|
---|
380 |
|
---|
381 | return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
|
---|
382 | / (__mu * std::sqrt(__mu));
|
---|
383 | }
|
---|
384 | }
|
---|
385 |
|
---|
386 |
|
---|
387 | /**
|
---|
388 | * @brief Return the complete elliptic integral of the second kind
|
---|
389 | * @f$ E(k) @f$ using the Carlson formulation.
|
---|
390 | *
|
---|
391 | * The complete elliptic integral of the second kind is defined as
|
---|
392 | * @f[
|
---|
393 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
|
---|
394 | * @f]
|
---|
395 | *
|
---|
396 | * @param __k The argument of the complete elliptic function.
|
---|
397 | * @return The complete elliptic function of the second kind.
|
---|
398 | */
|
---|
399 | template<typename _Tp>
|
---|
400 | _Tp
|
---|
401 | __comp_ellint_2(_Tp __k)
|
---|
402 | {
|
---|
403 |
|
---|
404 | if (__isnan(__k))
|
---|
405 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
406 | else if (std::abs(__k) == 1)
|
---|
407 | return _Tp(1);
|
---|
408 | else if (std::abs(__k) > _Tp(1))
|
---|
409 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
|
---|
410 | else
|
---|
411 | {
|
---|
412 | const _Tp __kk = __k * __k;
|
---|
413 |
|
---|
414 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
---|
415 | - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
|
---|
416 | }
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | /**
|
---|
421 | * @brief Return the incomplete elliptic integral of the second kind
|
---|
422 | * @f$ E(k,\phi) @f$ using the Carlson formulation.
|
---|
423 | *
|
---|
424 | * The incomplete elliptic integral of the second kind is defined as
|
---|
425 | * @f[
|
---|
426 | * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
|
---|
427 | * @f]
|
---|
428 | *
|
---|
429 | * @param __k The argument of the elliptic function.
|
---|
430 | * @param __phi The integral limit argument of the elliptic function.
|
---|
431 | * @return The elliptic function of the second kind.
|
---|
432 | */
|
---|
433 | template<typename _Tp>
|
---|
434 | _Tp
|
---|
435 | __ellint_2(_Tp __k, _Tp __phi)
|
---|
436 | {
|
---|
437 |
|
---|
438 | if (__isnan(__k) || __isnan(__phi))
|
---|
439 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
440 | else if (std::abs(__k) > _Tp(1))
|
---|
441 | std::__throw_domain_error(__N("Bad argument in __ellint_2."));
|
---|
442 | else
|
---|
443 | {
|
---|
444 | // Reduce phi to -pi/2 < phi < +pi/2.
|
---|
445 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
---|
446 | + _Tp(0.5L));
|
---|
447 | const _Tp __phi_red = __phi
|
---|
448 | - __n * __numeric_constants<_Tp>::__pi();
|
---|
449 |
|
---|
450 | const _Tp __kk = __k * __k;
|
---|
451 | const _Tp __s = std::sin(__phi_red);
|
---|
452 | const _Tp __ss = __s * __s;
|
---|
453 | const _Tp __sss = __ss * __s;
|
---|
454 | const _Tp __c = std::cos(__phi_red);
|
---|
455 | const _Tp __cc = __c * __c;
|
---|
456 |
|
---|
457 | const _Tp __E = __s
|
---|
458 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
---|
459 | - __kk * __sss
|
---|
460 | * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
---|
461 | / _Tp(3);
|
---|
462 |
|
---|
463 | if (__n == 0)
|
---|
464 | return __E;
|
---|
465 | else
|
---|
466 | return __E + _Tp(2) * __n * __comp_ellint_2(__k);
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 |
|
---|
471 | /**
|
---|
472 | * @brief Return the Carlson elliptic function
|
---|
473 | * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
|
---|
474 | * is the Carlson elliptic function of the first kind.
|
---|
475 | *
|
---|
476 | * The Carlson elliptic function is defined by:
|
---|
477 | * @f[
|
---|
478 | * R_C(x,y) = \frac{1}{2} \int_0^\infty
|
---|
479 | * \frac{dt}{(t + x)^{1/2}(t + y)}
|
---|
480 | * @f]
|
---|
481 | *
|
---|
482 | * Based on Carlson's algorithms:
|
---|
483 | * - B. C. Carlson Numer. Math. 33, 1 (1979)
|
---|
484 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
---|
485 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
---|
486 | * by Press, Teukolsky, Vetterling, Flannery (1992)
|
---|
487 | *
|
---|
488 | * @param __x The first argument.
|
---|
489 | * @param __y The second argument.
|
---|
490 | * @return The Carlson elliptic function.
|
---|
491 | */
|
---|
492 | template<typename _Tp>
|
---|
493 | _Tp
|
---|
494 | __ellint_rc(_Tp __x, _Tp __y)
|
---|
495 | {
|
---|
496 | const _Tp __min = std::numeric_limits<_Tp>::min();
|
---|
497 | const _Tp __lolim = _Tp(5) * __min;
|
---|
498 |
|
---|
499 | if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
|
---|
500 | std::__throw_domain_error(__N("Argument less than zero "
|
---|
501 | "in __ellint_rc."));
|
---|
502 | else
|
---|
503 | {
|
---|
504 | const _Tp __c0 = _Tp(1) / _Tp(4);
|
---|
505 | const _Tp __c1 = _Tp(1) / _Tp(7);
|
---|
506 | const _Tp __c2 = _Tp(9) / _Tp(22);
|
---|
507 | const _Tp __c3 = _Tp(3) / _Tp(10);
|
---|
508 | const _Tp __c4 = _Tp(3) / _Tp(8);
|
---|
509 |
|
---|
510 | _Tp __xn = __x;
|
---|
511 | _Tp __yn = __y;
|
---|
512 |
|
---|
513 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
514 | const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
|
---|
515 | _Tp __mu;
|
---|
516 | _Tp __sn;
|
---|
517 |
|
---|
518 | const unsigned int __max_iter = 100;
|
---|
519 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
---|
520 | {
|
---|
521 | __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
|
---|
522 | __sn = (__yn + __mu) / __mu - _Tp(2);
|
---|
523 | if (std::abs(__sn) < __errtol)
|
---|
524 | break;
|
---|
525 | const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
|
---|
526 | + __yn;
|
---|
527 | __xn = __c0 * (__xn + __lambda);
|
---|
528 | __yn = __c0 * (__yn + __lambda);
|
---|
529 | }
|
---|
530 |
|
---|
531 | _Tp __s = __sn * __sn
|
---|
532 | * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
|
---|
533 |
|
---|
534 | return (_Tp(1) + __s) / std::sqrt(__mu);
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /**
|
---|
540 | * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
|
---|
541 | * of the third kind.
|
---|
542 | *
|
---|
543 | * The Carlson elliptic function of the third kind is defined by:
|
---|
544 | * @f[
|
---|
545 | * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
|
---|
546 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
|
---|
547 | * @f]
|
---|
548 | *
|
---|
549 | * Based on Carlson's algorithms:
|
---|
550 | * - B. C. Carlson Numer. Math. 33, 1 (1979)
|
---|
551 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
|
---|
552 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,
|
---|
553 | * by Press, Teukolsky, Vetterling, Flannery (1992)
|
---|
554 | *
|
---|
555 | * @param __x The first of three symmetric arguments.
|
---|
556 | * @param __y The second of three symmetric arguments.
|
---|
557 | * @param __z The third of three symmetric arguments.
|
---|
558 | * @param __p The fourth argument.
|
---|
559 | * @return The Carlson elliptic function of the fourth kind.
|
---|
560 | */
|
---|
561 | template<typename _Tp>
|
---|
562 | _Tp
|
---|
563 | __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
|
---|
564 | {
|
---|
565 | const _Tp __min = std::numeric_limits<_Tp>::min();
|
---|
566 | const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
|
---|
567 |
|
---|
568 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
|
---|
569 | std::__throw_domain_error(__N("Argument less than zero "
|
---|
570 | "in __ellint_rj."));
|
---|
571 | else if (__x + __y < __lolim || __x + __z < __lolim
|
---|
572 | || __y + __z < __lolim || __p < __lolim)
|
---|
573 | std::__throw_domain_error(__N("Argument too small "
|
---|
574 | "in __ellint_rj"));
|
---|
575 | else
|
---|
576 | {
|
---|
577 | const _Tp __c0 = _Tp(1) / _Tp(4);
|
---|
578 | const _Tp __c1 = _Tp(3) / _Tp(14);
|
---|
579 | const _Tp __c2 = _Tp(1) / _Tp(3);
|
---|
580 | const _Tp __c3 = _Tp(3) / _Tp(22);
|
---|
581 | const _Tp __c4 = _Tp(3) / _Tp(26);
|
---|
582 |
|
---|
583 | _Tp __xn = __x;
|
---|
584 | _Tp __yn = __y;
|
---|
585 | _Tp __zn = __z;
|
---|
586 | _Tp __pn = __p;
|
---|
587 | _Tp __sigma = _Tp(0);
|
---|
588 | _Tp __power4 = _Tp(1);
|
---|
589 |
|
---|
590 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
591 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
|
---|
592 |
|
---|
593 | _Tp __mu;
|
---|
594 | _Tp __xndev, __yndev, __zndev, __pndev;
|
---|
595 |
|
---|
596 | const unsigned int __max_iter = 100;
|
---|
597 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
|
---|
598 | {
|
---|
599 | __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
|
---|
600 | __xndev = (__mu - __xn) / __mu;
|
---|
601 | __yndev = (__mu - __yn) / __mu;
|
---|
602 | __zndev = (__mu - __zn) / __mu;
|
---|
603 | __pndev = (__mu - __pn) / __mu;
|
---|
604 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
|
---|
605 | __epsilon = std::max(__epsilon, std::abs(__zndev));
|
---|
606 | __epsilon = std::max(__epsilon, std::abs(__pndev));
|
---|
607 | if (__epsilon < __errtol)
|
---|
608 | break;
|
---|
609 | const _Tp __xnroot = std::sqrt(__xn);
|
---|
610 | const _Tp __ynroot = std::sqrt(__yn);
|
---|
611 | const _Tp __znroot = std::sqrt(__zn);
|
---|
612 | const _Tp __lambda = __xnroot * (__ynroot + __znroot)
|
---|
613 | + __ynroot * __znroot;
|
---|
614 | const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
|
---|
615 | + __xnroot * __ynroot * __znroot;
|
---|
616 | const _Tp __alpha2 = __alpha1 * __alpha1;
|
---|
617 | const _Tp __beta = __pn * (__pn + __lambda)
|
---|
618 | * (__pn + __lambda);
|
---|
619 | __sigma += __power4 * __ellint_rc(__alpha2, __beta);
|
---|
620 | __power4 *= __c0;
|
---|
621 | __xn = __c0 * (__xn + __lambda);
|
---|
622 | __yn = __c0 * (__yn + __lambda);
|
---|
623 | __zn = __c0 * (__zn + __lambda);
|
---|
624 | __pn = __c0 * (__pn + __lambda);
|
---|
625 | }
|
---|
626 |
|
---|
627 | _Tp __ea = __xndev * (__yndev + __zndev) + __yndev * __zndev;
|
---|
628 | _Tp __eb = __xndev * __yndev * __zndev;
|
---|
629 | _Tp __ec = __pndev * __pndev;
|
---|
630 | _Tp __e2 = __ea - _Tp(3) * __ec;
|
---|
631 | _Tp __e3 = __eb + _Tp(2) * __pndev * (__ea - __ec);
|
---|
632 | _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
|
---|
633 | - _Tp(3) * __c4 * __e3 / _Tp(2));
|
---|
634 | _Tp __s2 = __eb * (__c2 / _Tp(2)
|
---|
635 | + __pndev * (-__c3 - __c3 + __pndev * __c4));
|
---|
636 | _Tp __s3 = __pndev * __ea * (__c2 - __pndev * __c3)
|
---|
637 | - __c2 * __pndev * __ec;
|
---|
638 |
|
---|
639 | return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
|
---|
640 | / (__mu * std::sqrt(__mu));
|
---|
641 | }
|
---|
642 | }
|
---|
643 |
|
---|
644 |
|
---|
645 | /**
|
---|
646 | * @brief Return the complete elliptic integral of the third kind
|
---|
647 | * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
|
---|
648 | * Carlson formulation.
|
---|
649 | *
|
---|
650 | * The complete elliptic integral of the third kind is defined as
|
---|
651 | * @f[
|
---|
652 | * \Pi(k,\nu) = \int_0^{\pi/2}
|
---|
653 | * \frac{d\theta}
|
---|
654 | * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
|
---|
655 | * @f]
|
---|
656 | *
|
---|
657 | * @param __k The argument of the elliptic function.
|
---|
658 | * @param __nu The second argument of the elliptic function.
|
---|
659 | * @return The complete elliptic function of the third kind.
|
---|
660 | */
|
---|
661 | template<typename _Tp>
|
---|
662 | _Tp
|
---|
663 | __comp_ellint_3(_Tp __k, _Tp __nu)
|
---|
664 | {
|
---|
665 |
|
---|
666 | if (__isnan(__k) || __isnan(__nu))
|
---|
667 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
668 | else if (__nu == _Tp(1))
|
---|
669 | return std::numeric_limits<_Tp>::infinity();
|
---|
670 | else if (std::abs(__k) > _Tp(1))
|
---|
671 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
|
---|
672 | else
|
---|
673 | {
|
---|
674 | const _Tp __kk = __k * __k;
|
---|
675 |
|
---|
676 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
|
---|
677 | + __nu
|
---|
678 | * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu)
|
---|
679 | / _Tp(3);
|
---|
680 | }
|
---|
681 | }
|
---|
682 |
|
---|
683 |
|
---|
684 | /**
|
---|
685 | * @brief Return the incomplete elliptic integral of the third kind
|
---|
686 | * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
|
---|
687 | *
|
---|
688 | * The incomplete elliptic integral of the third kind is defined as
|
---|
689 | * @f[
|
---|
690 | * \Pi(k,\nu,\phi) = \int_0^{\phi}
|
---|
691 | * \frac{d\theta}
|
---|
692 | * {(1 - \nu \sin^2\theta)
|
---|
693 | * \sqrt{1 - k^2 \sin^2\theta}}
|
---|
694 | * @f]
|
---|
695 | *
|
---|
696 | * @param __k The argument of the elliptic function.
|
---|
697 | * @param __nu The second argument of the elliptic function.
|
---|
698 | * @param __phi The integral limit argument of the elliptic function.
|
---|
699 | * @return The elliptic function of the third kind.
|
---|
700 | */
|
---|
701 | template<typename _Tp>
|
---|
702 | _Tp
|
---|
703 | __ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
|
---|
704 | {
|
---|
705 |
|
---|
706 | if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
|
---|
707 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
708 | else if (std::abs(__k) > _Tp(1))
|
---|
709 | std::__throw_domain_error(__N("Bad argument in __ellint_3."));
|
---|
710 | else
|
---|
711 | {
|
---|
712 | // Reduce phi to -pi/2 < phi < +pi/2.
|
---|
713 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
|
---|
714 | + _Tp(0.5L));
|
---|
715 | const _Tp __phi_red = __phi
|
---|
716 | - __n * __numeric_constants<_Tp>::__pi();
|
---|
717 |
|
---|
718 | const _Tp __kk = __k * __k;
|
---|
719 | const _Tp __s = std::sin(__phi_red);
|
---|
720 | const _Tp __ss = __s * __s;
|
---|
721 | const _Tp __sss = __ss * __s;
|
---|
722 | const _Tp __c = std::cos(__phi_red);
|
---|
723 | const _Tp __cc = __c * __c;
|
---|
724 |
|
---|
725 | const _Tp __Pi = __s
|
---|
726 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
|
---|
727 | + __nu * __sss
|
---|
728 | * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
|
---|
729 | _Tp(1) - __nu * __ss) / _Tp(3);
|
---|
730 |
|
---|
731 | if (__n == 0)
|
---|
732 | return __Pi;
|
---|
733 | else
|
---|
734 | return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
|
---|
735 | }
|
---|
736 | }
|
---|
737 | } // namespace __detail
|
---|
738 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
739 | } // namespace tr1
|
---|
740 | #endif
|
---|
741 |
|
---|
742 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
743 | }
|
---|
744 |
|
---|
745 | #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
|
---|
746 |
|
---|