[1166] | 1 | // Special functions -*- C++ -*-
|
---|
| 2 |
|
---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
| 4 | //
|
---|
| 5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
| 6 | // software; you can redistribute it and/or modify it under the
|
---|
| 7 | // terms of the GNU General Public License as published by the
|
---|
| 8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
| 9 | // any later version.
|
---|
| 10 | //
|
---|
| 11 | // This library is distributed in the hope that it will be useful,
|
---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | // GNU General Public License for more details.
|
---|
| 15 | //
|
---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
| 17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
| 18 | // 3.1, as published by the Free Software Foundation.
|
---|
| 19 |
|
---|
| 20 | // You should have received a copy of the GNU General Public License and
|
---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
| 23 | // <http://www.gnu.org/licenses/>.
|
---|
| 24 |
|
---|
| 25 | /** @file tr1/exp_integral.tcc
|
---|
| 26 | * This is an internal header file, included by other library headers.
|
---|
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | //
|
---|
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
| 32 | //
|
---|
| 33 |
|
---|
| 34 | // Written by Edward Smith-Rowland based on:
|
---|
| 35 | //
|
---|
| 36 | // (1) Handbook of Mathematical Functions,
|
---|
| 37 | // Ed. by Milton Abramowitz and Irene A. Stegun,
|
---|
| 38 | // Dover Publications, New-York, Section 5, pp. 228-251.
|
---|
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
| 40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
| 41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
| 42 | // 2nd ed, pp. 222-225.
|
---|
| 43 | //
|
---|
| 44 |
|
---|
| 45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
|
---|
| 46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
|
---|
| 47 |
|
---|
| 48 | #include <tr1/special_function_util.h>
|
---|
| 49 |
|
---|
| 50 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
| 51 | {
|
---|
| 52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
| 53 |
|
---|
| 54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
| 55 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
| 56 | namespace tr1
|
---|
| 57 | {
|
---|
| 58 | #else
|
---|
| 59 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
| 60 | #endif
|
---|
| 61 | // [5.2] Special functions
|
---|
| 62 |
|
---|
| 63 | // Implementation-space details.
|
---|
| 64 | namespace __detail
|
---|
| 65 | {
|
---|
| 66 | template<typename _Tp> _Tp __expint_E1(_Tp);
|
---|
| 67 |
|
---|
| 68 | /**
|
---|
| 69 | * @brief Return the exponential integral @f$ E_1(x) @f$
|
---|
| 70 | * by series summation. This should be good
|
---|
| 71 | * for @f$ x < 1 @f$.
|
---|
| 72 | *
|
---|
| 73 | * The exponential integral is given by
|
---|
| 74 | * \f[
|
---|
| 75 | * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
|
---|
| 76 | * \f]
|
---|
| 77 | *
|
---|
| 78 | * @param __x The argument of the exponential integral function.
|
---|
| 79 | * @return The exponential integral.
|
---|
| 80 | */
|
---|
| 81 | template<typename _Tp>
|
---|
| 82 | _Tp
|
---|
| 83 | __expint_E1_series(_Tp __x)
|
---|
| 84 | {
|
---|
| 85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 86 | _Tp __term = _Tp(1);
|
---|
| 87 | _Tp __esum = _Tp(0);
|
---|
| 88 | _Tp __osum = _Tp(0);
|
---|
| 89 | const unsigned int __max_iter = 1000;
|
---|
| 90 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
| 91 | {
|
---|
| 92 | __term *= - __x / __i;
|
---|
| 93 | if (std::abs(__term) < __eps)
|
---|
| 94 | break;
|
---|
| 95 | if (__term >= _Tp(0))
|
---|
| 96 | __esum += __term / __i;
|
---|
| 97 | else
|
---|
| 98 | __osum += __term / __i;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | return - __esum - __osum
|
---|
| 102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 |
|
---|
| 106 | /**
|
---|
| 107 | * @brief Return the exponential integral @f$ E_1(x) @f$
|
---|
| 108 | * by asymptotic expansion.
|
---|
| 109 | *
|
---|
| 110 | * The exponential integral is given by
|
---|
| 111 | * \f[
|
---|
| 112 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
|
---|
| 113 | * \f]
|
---|
| 114 | *
|
---|
| 115 | * @param __x The argument of the exponential integral function.
|
---|
| 116 | * @return The exponential integral.
|
---|
| 117 | */
|
---|
| 118 | template<typename _Tp>
|
---|
| 119 | _Tp
|
---|
| 120 | __expint_E1_asymp(_Tp __x)
|
---|
| 121 | {
|
---|
| 122 | _Tp __term = _Tp(1);
|
---|
| 123 | _Tp __esum = _Tp(1);
|
---|
| 124 | _Tp __osum = _Tp(0);
|
---|
| 125 | const unsigned int __max_iter = 1000;
|
---|
| 126 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
| 127 | {
|
---|
| 128 | _Tp __prev = __term;
|
---|
| 129 | __term *= - __i / __x;
|
---|
| 130 | if (std::abs(__term) > std::abs(__prev))
|
---|
| 131 | break;
|
---|
| 132 | if (__term >= _Tp(0))
|
---|
| 133 | __esum += __term;
|
---|
| 134 | else
|
---|
| 135 | __osum += __term;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | return std::exp(- __x) * (__esum + __osum) / __x;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 |
|
---|
| 142 | /**
|
---|
| 143 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
| 144 | * by series summation.
|
---|
| 145 | *
|
---|
| 146 | * The exponential integral is given by
|
---|
| 147 | * \f[
|
---|
| 148 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 149 | * \f]
|
---|
| 150 | *
|
---|
| 151 | * @param __n The order of the exponential integral function.
|
---|
| 152 | * @param __x The argument of the exponential integral function.
|
---|
| 153 | * @return The exponential integral.
|
---|
| 154 | */
|
---|
| 155 | template<typename _Tp>
|
---|
| 156 | _Tp
|
---|
| 157 | __expint_En_series(unsigned int __n, _Tp __x)
|
---|
| 158 | {
|
---|
| 159 | const unsigned int __max_iter = 1000;
|
---|
| 160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 161 | const int __nm1 = __n - 1;
|
---|
| 162 | _Tp __ans = (__nm1 != 0
|
---|
| 163 | ? _Tp(1) / __nm1 : -std::log(__x)
|
---|
| 164 | - __numeric_constants<_Tp>::__gamma_e());
|
---|
| 165 | _Tp __fact = _Tp(1);
|
---|
| 166 | for (int __i = 1; __i <= __max_iter; ++__i)
|
---|
| 167 | {
|
---|
| 168 | __fact *= -__x / _Tp(__i);
|
---|
| 169 | _Tp __del;
|
---|
| 170 | if ( __i != __nm1 )
|
---|
| 171 | __del = -__fact / _Tp(__i - __nm1);
|
---|
| 172 | else
|
---|
| 173 | {
|
---|
| 174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e();
|
---|
| 175 | for (int __ii = 1; __ii <= __nm1; ++__ii)
|
---|
| 176 | __psi += _Tp(1) / _Tp(__ii);
|
---|
| 177 | __del = __fact * (__psi - std::log(__x));
|
---|
| 178 | }
|
---|
| 179 | __ans += __del;
|
---|
| 180 | if (std::abs(__del) < __eps * std::abs(__ans))
|
---|
| 181 | return __ans;
|
---|
| 182 | }
|
---|
| 183 | std::__throw_runtime_error(__N("Series summation failed "
|
---|
| 184 | "in __expint_En_series."));
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | /**
|
---|
| 189 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
| 190 | * by continued fractions.
|
---|
| 191 | *
|
---|
| 192 | * The exponential integral is given by
|
---|
| 193 | * \f[
|
---|
| 194 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 195 | * \f]
|
---|
| 196 | *
|
---|
| 197 | * @param __n The order of the exponential integral function.
|
---|
| 198 | * @param __x The argument of the exponential integral function.
|
---|
| 199 | * @return The exponential integral.
|
---|
| 200 | */
|
---|
| 201 | template<typename _Tp>
|
---|
| 202 | _Tp
|
---|
| 203 | __expint_En_cont_frac(unsigned int __n, _Tp __x)
|
---|
| 204 | {
|
---|
| 205 | const unsigned int __max_iter = 1000;
|
---|
| 206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min();
|
---|
| 208 | const int __nm1 = __n - 1;
|
---|
| 209 | _Tp __b = __x + _Tp(__n);
|
---|
| 210 | _Tp __c = _Tp(1) / __fp_min;
|
---|
| 211 | _Tp __d = _Tp(1) / __b;
|
---|
| 212 | _Tp __h = __d;
|
---|
| 213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
|
---|
| 214 | {
|
---|
| 215 | _Tp __a = -_Tp(__i * (__nm1 + __i));
|
---|
| 216 | __b += _Tp(2);
|
---|
| 217 | __d = _Tp(1) / (__a * __d + __b);
|
---|
| 218 | __c = __b + __a / __c;
|
---|
| 219 | const _Tp __del = __c * __d;
|
---|
| 220 | __h *= __del;
|
---|
| 221 | if (std::abs(__del - _Tp(1)) < __eps)
|
---|
| 222 | {
|
---|
| 223 | const _Tp __ans = __h * std::exp(-__x);
|
---|
| 224 | return __ans;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 | std::__throw_runtime_error(__N("Continued fraction failed "
|
---|
| 228 | "in __expint_En_cont_frac."));
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 |
|
---|
| 232 | /**
|
---|
| 233 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
| 234 | * by recursion. Use upward recursion for @f$ x < n @f$
|
---|
| 235 | * and downward recursion (Miller's algorithm) otherwise.
|
---|
| 236 | *
|
---|
| 237 | * The exponential integral is given by
|
---|
| 238 | * \f[
|
---|
| 239 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 240 | * \f]
|
---|
| 241 | *
|
---|
| 242 | * @param __n The order of the exponential integral function.
|
---|
| 243 | * @param __x The argument of the exponential integral function.
|
---|
| 244 | * @return The exponential integral.
|
---|
| 245 | */
|
---|
| 246 | template<typename _Tp>
|
---|
| 247 | _Tp
|
---|
| 248 | __expint_En_recursion(unsigned int __n, _Tp __x)
|
---|
| 249 | {
|
---|
| 250 | _Tp __En;
|
---|
| 251 | _Tp __E1 = __expint_E1(__x);
|
---|
| 252 | if (__x < _Tp(__n))
|
---|
| 253 | {
|
---|
| 254 | // Forward recursion is stable only for n < x.
|
---|
| 255 | __En = __E1;
|
---|
| 256 | for (unsigned int __j = 2; __j < __n; ++__j)
|
---|
| 257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
|
---|
| 258 | }
|
---|
| 259 | else
|
---|
| 260 | {
|
---|
| 261 | // Backward recursion is stable only for n >= x.
|
---|
| 262 | __En = _Tp(1);
|
---|
| 263 | const int __N = __n + 20; // TODO: Check this starting number.
|
---|
| 264 | _Tp __save = _Tp(0);
|
---|
| 265 | for (int __j = __N; __j > 0; --__j)
|
---|
| 266 | {
|
---|
| 267 | __En = (std::exp(-__x) - __j * __En) / __x;
|
---|
| 268 | if (__j == __n)
|
---|
| 269 | __save = __En;
|
---|
| 270 | }
|
---|
| 271 | _Tp __norm = __En / __E1;
|
---|
| 272 | __En /= __norm;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | return __En;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | /**
|
---|
| 279 | * @brief Return the exponential integral @f$ Ei(x) @f$
|
---|
| 280 | * by series summation.
|
---|
| 281 | *
|
---|
| 282 | * The exponential integral is given by
|
---|
| 283 | * \f[
|
---|
| 284 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
| 285 | * \f]
|
---|
| 286 | *
|
---|
| 287 | * @param __x The argument of the exponential integral function.
|
---|
| 288 | * @return The exponential integral.
|
---|
| 289 | */
|
---|
| 290 | template<typename _Tp>
|
---|
| 291 | _Tp
|
---|
| 292 | __expint_Ei_series(_Tp __x)
|
---|
| 293 | {
|
---|
| 294 | _Tp __term = _Tp(1);
|
---|
| 295 | _Tp __sum = _Tp(0);
|
---|
| 296 | const unsigned int __max_iter = 1000;
|
---|
| 297 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
| 298 | {
|
---|
| 299 | __term *= __x / __i;
|
---|
| 300 | __sum += __term / __i;
|
---|
| 301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
|
---|
| 302 | break;
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 |
|
---|
| 309 | /**
|
---|
| 310 | * @brief Return the exponential integral @f$ Ei(x) @f$
|
---|
| 311 | * by asymptotic expansion.
|
---|
| 312 | *
|
---|
| 313 | * The exponential integral is given by
|
---|
| 314 | * \f[
|
---|
| 315 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
| 316 | * \f]
|
---|
| 317 | *
|
---|
| 318 | * @param __x The argument of the exponential integral function.
|
---|
| 319 | * @return The exponential integral.
|
---|
| 320 | */
|
---|
| 321 | template<typename _Tp>
|
---|
| 322 | _Tp
|
---|
| 323 | __expint_Ei_asymp(_Tp __x)
|
---|
| 324 | {
|
---|
| 325 | _Tp __term = _Tp(1);
|
---|
| 326 | _Tp __sum = _Tp(1);
|
---|
| 327 | const unsigned int __max_iter = 1000;
|
---|
| 328 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
| 329 | {
|
---|
| 330 | _Tp __prev = __term;
|
---|
| 331 | __term *= __i / __x;
|
---|
| 332 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
| 333 | break;
|
---|
| 334 | if (__term >= __prev)
|
---|
| 335 | break;
|
---|
| 336 | __sum += __term;
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | return std::exp(__x) * __sum / __x;
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 |
|
---|
| 343 | /**
|
---|
| 344 | * @brief Return the exponential integral @f$ Ei(x) @f$.
|
---|
| 345 | *
|
---|
| 346 | * The exponential integral is given by
|
---|
| 347 | * \f[
|
---|
| 348 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
| 349 | * \f]
|
---|
| 350 | *
|
---|
| 351 | * @param __x The argument of the exponential integral function.
|
---|
| 352 | * @return The exponential integral.
|
---|
| 353 | */
|
---|
| 354 | template<typename _Tp>
|
---|
| 355 | _Tp
|
---|
| 356 | __expint_Ei(_Tp __x)
|
---|
| 357 | {
|
---|
| 358 | if (__x < _Tp(0))
|
---|
| 359 | return -__expint_E1(-__x);
|
---|
| 360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
|
---|
| 361 | return __expint_Ei_series(__x);
|
---|
| 362 | else
|
---|
| 363 | return __expint_Ei_asymp(__x);
|
---|
| 364 | }
|
---|
| 365 |
|
---|
| 366 |
|
---|
| 367 | /**
|
---|
| 368 | * @brief Return the exponential integral @f$ E_1(x) @f$.
|
---|
| 369 | *
|
---|
| 370 | * The exponential integral is given by
|
---|
| 371 | * \f[
|
---|
| 372 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
|
---|
| 373 | * \f]
|
---|
| 374 | *
|
---|
| 375 | * @param __x The argument of the exponential integral function.
|
---|
| 376 | * @return The exponential integral.
|
---|
| 377 | */
|
---|
| 378 | template<typename _Tp>
|
---|
| 379 | _Tp
|
---|
| 380 | __expint_E1(_Tp __x)
|
---|
| 381 | {
|
---|
| 382 | if (__x < _Tp(0))
|
---|
| 383 | return -__expint_Ei(-__x);
|
---|
| 384 | else if (__x < _Tp(1))
|
---|
| 385 | return __expint_E1_series(__x);
|
---|
| 386 | else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
|
---|
| 387 | return __expint_En_cont_frac(1, __x);
|
---|
| 388 | else
|
---|
| 389 | return __expint_E1_asymp(__x);
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 |
|
---|
| 393 | /**
|
---|
| 394 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
| 395 | * for large argument.
|
---|
| 396 | *
|
---|
| 397 | * The exponential integral is given by
|
---|
| 398 | * \f[
|
---|
| 399 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 400 | * \f]
|
---|
| 401 | *
|
---|
| 402 | * This is something of an extension.
|
---|
| 403 | *
|
---|
| 404 | * @param __n The order of the exponential integral function.
|
---|
| 405 | * @param __x The argument of the exponential integral function.
|
---|
| 406 | * @return The exponential integral.
|
---|
| 407 | */
|
---|
| 408 | template<typename _Tp>
|
---|
| 409 | _Tp
|
---|
| 410 | __expint_asymp(unsigned int __n, _Tp __x)
|
---|
| 411 | {
|
---|
| 412 | _Tp __term = _Tp(1);
|
---|
| 413 | _Tp __sum = _Tp(1);
|
---|
| 414 | for (unsigned int __i = 1; __i <= __n; ++__i)
|
---|
| 415 | {
|
---|
| 416 | _Tp __prev = __term;
|
---|
| 417 | __term *= -(__n - __i + 1) / __x;
|
---|
| 418 | if (std::abs(__term) > std::abs(__prev))
|
---|
| 419 | break;
|
---|
| 420 | __sum += __term;
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | return std::exp(-__x) * __sum / __x;
|
---|
| 424 | }
|
---|
| 425 |
|
---|
| 426 |
|
---|
| 427 | /**
|
---|
| 428 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
| 429 | * for large order.
|
---|
| 430 | *
|
---|
| 431 | * The exponential integral is given by
|
---|
| 432 | * \f[
|
---|
| 433 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 434 | * \f]
|
---|
| 435 | *
|
---|
| 436 | * This is something of an extension.
|
---|
| 437 | *
|
---|
| 438 | * @param __n The order of the exponential integral function.
|
---|
| 439 | * @param __x The argument of the exponential integral function.
|
---|
| 440 | * @return The exponential integral.
|
---|
| 441 | */
|
---|
| 442 | template<typename _Tp>
|
---|
| 443 | _Tp
|
---|
| 444 | __expint_large_n(unsigned int __n, _Tp __x)
|
---|
| 445 | {
|
---|
| 446 | const _Tp __xpn = __x + __n;
|
---|
| 447 | const _Tp __xpn2 = __xpn * __xpn;
|
---|
| 448 | _Tp __term = _Tp(1);
|
---|
| 449 | _Tp __sum = _Tp(1);
|
---|
| 450 | for (unsigned int __i = 1; __i <= __n; ++__i)
|
---|
| 451 | {
|
---|
| 452 | _Tp __prev = __term;
|
---|
| 453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
|
---|
| 454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
|
---|
| 455 | break;
|
---|
| 456 | __sum += __term;
|
---|
| 457 | }
|
---|
| 458 |
|
---|
| 459 | return std::exp(-__x) * __sum / __xpn;
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 |
|
---|
| 463 | /**
|
---|
| 464 | * @brief Return the exponential integral @f$ E_n(x) @f$.
|
---|
| 465 | *
|
---|
| 466 | * The exponential integral is given by
|
---|
| 467 | * \f[
|
---|
| 468 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
| 469 | * \f]
|
---|
| 470 | * This is something of an extension.
|
---|
| 471 | *
|
---|
| 472 | * @param __n The order of the exponential integral function.
|
---|
| 473 | * @param __x The argument of the exponential integral function.
|
---|
| 474 | * @return The exponential integral.
|
---|
| 475 | */
|
---|
| 476 | template<typename _Tp>
|
---|
| 477 | _Tp
|
---|
| 478 | __expint(unsigned int __n, _Tp __x)
|
---|
| 479 | {
|
---|
| 480 | // Return NaN on NaN input.
|
---|
| 481 | if (__isnan(__x))
|
---|
| 482 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 483 | else if (__n <= 1 && __x == _Tp(0))
|
---|
| 484 | return std::numeric_limits<_Tp>::infinity();
|
---|
| 485 | else
|
---|
| 486 | {
|
---|
| 487 | _Tp __E0 = std::exp(__x) / __x;
|
---|
| 488 | if (__n == 0)
|
---|
| 489 | return __E0;
|
---|
| 490 |
|
---|
| 491 | _Tp __E1 = __expint_E1(__x);
|
---|
| 492 | if (__n == 1)
|
---|
| 493 | return __E1;
|
---|
| 494 |
|
---|
| 495 | if (__x == _Tp(0))
|
---|
| 496 | return _Tp(1) / static_cast<_Tp>(__n - 1);
|
---|
| 497 |
|
---|
| 498 | _Tp __En = __expint_En_recursion(__n, __x);
|
---|
| 499 |
|
---|
| 500 | return __En;
|
---|
| 501 | }
|
---|
| 502 | }
|
---|
| 503 |
|
---|
| 504 |
|
---|
| 505 | /**
|
---|
| 506 | * @brief Return the exponential integral @f$ Ei(x) @f$.
|
---|
| 507 | *
|
---|
| 508 | * The exponential integral is given by
|
---|
| 509 | * \f[
|
---|
| 510 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
| 511 | * \f]
|
---|
| 512 | *
|
---|
| 513 | * @param __x The argument of the exponential integral function.
|
---|
| 514 | * @return The exponential integral.
|
---|
| 515 | */
|
---|
| 516 | template<typename _Tp>
|
---|
| 517 | inline _Tp
|
---|
| 518 | __expint(_Tp __x)
|
---|
| 519 | {
|
---|
| 520 | if (__isnan(__x))
|
---|
| 521 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 522 | else
|
---|
| 523 | return __expint_Ei(__x);
|
---|
| 524 | }
|
---|
| 525 | } // namespace __detail
|
---|
| 526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
| 527 | } // namespace tr1
|
---|
| 528 | #endif
|
---|
| 529 |
|
---|
| 530 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
|
---|