| [1166] | 1 | // Special functions -*- C++ -*- | 
|---|
|  | 2 |  | 
|---|
|  | 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc. | 
|---|
|  | 4 | // | 
|---|
|  | 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
|---|
|  | 6 | // software; you can redistribute it and/or modify it under the | 
|---|
|  | 7 | // terms of the GNU General Public License as published by the | 
|---|
|  | 8 | // Free Software Foundation; either version 3, or (at your option) | 
|---|
|  | 9 | // any later version. | 
|---|
|  | 10 | // | 
|---|
|  | 11 | // This library is distributed in the hope that it will be useful, | 
|---|
|  | 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | // GNU General Public License for more details. | 
|---|
|  | 15 | // | 
|---|
|  | 16 | // Under Section 7 of GPL version 3, you are granted additional | 
|---|
|  | 17 | // permissions described in the GCC Runtime Library Exception, version | 
|---|
|  | 18 | // 3.1, as published by the Free Software Foundation. | 
|---|
|  | 19 |  | 
|---|
|  | 20 | // You should have received a copy of the GNU General Public License and | 
|---|
|  | 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
|---|
|  | 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|---|
|  | 23 | // <http://www.gnu.org/licenses/>. | 
|---|
|  | 24 |  | 
|---|
|  | 25 | /** @file tr1/exp_integral.tcc | 
|---|
|  | 26 | *  This is an internal header file, included by other library headers. | 
|---|
|  | 27 | *  Do not attempt to use it directly. @headername{tr1/cmath} | 
|---|
|  | 28 | */ | 
|---|
|  | 29 |  | 
|---|
|  | 30 | // | 
|---|
|  | 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
|---|
|  | 32 | // | 
|---|
|  | 33 |  | 
|---|
|  | 34 | //  Written by Edward Smith-Rowland based on: | 
|---|
|  | 35 | // | 
|---|
|  | 36 | //   (1) Handbook of Mathematical Functions, | 
|---|
|  | 37 | //       Ed. by Milton Abramowitz and Irene A. Stegun, | 
|---|
|  | 38 | //       Dover Publications, New-York, Section 5, pp. 228-251. | 
|---|
|  | 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
|---|
|  | 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
|---|
|  | 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
|---|
|  | 42 | //       2nd ed, pp. 222-225. | 
|---|
|  | 43 | // | 
|---|
|  | 44 |  | 
|---|
|  | 45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
|---|
|  | 46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 | 
|---|
|  | 47 |  | 
|---|
|  | 48 | #include <tr1/special_function_util.h> | 
|---|
|  | 49 |  | 
|---|
|  | 50 | namespace std _GLIBCXX_VISIBILITY(default) | 
|---|
|  | 51 | { | 
|---|
|  | 52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
|---|
|  | 53 |  | 
|---|
|  | 54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
|---|
|  | 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
|---|
|  | 56 | namespace tr1 | 
|---|
|  | 57 | { | 
|---|
|  | 58 | #else | 
|---|
|  | 59 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
|---|
|  | 60 | #endif | 
|---|
|  | 61 | // [5.2] Special functions | 
|---|
|  | 62 |  | 
|---|
|  | 63 | // Implementation-space details. | 
|---|
|  | 64 | namespace __detail | 
|---|
|  | 65 | { | 
|---|
|  | 66 | template<typename _Tp> _Tp __expint_E1(_Tp); | 
|---|
|  | 67 |  | 
|---|
|  | 68 | /** | 
|---|
|  | 69 | *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
|---|
|  | 70 | *          by series summation.  This should be good | 
|---|
|  | 71 | *          for @f$ x < 1 @f$. | 
|---|
|  | 72 | * | 
|---|
|  | 73 | *   The exponential integral is given by | 
|---|
|  | 74 | *          \f[ | 
|---|
|  | 75 | *            E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt | 
|---|
|  | 76 | *          \f] | 
|---|
|  | 77 | * | 
|---|
|  | 78 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 79 | *   @return  The exponential integral. | 
|---|
|  | 80 | */ | 
|---|
|  | 81 | template<typename _Tp> | 
|---|
|  | 82 | _Tp | 
|---|
|  | 83 | __expint_E1_series(_Tp __x) | 
|---|
|  | 84 | { | 
|---|
|  | 85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
|  | 86 | _Tp __term = _Tp(1); | 
|---|
|  | 87 | _Tp __esum = _Tp(0); | 
|---|
|  | 88 | _Tp __osum = _Tp(0); | 
|---|
|  | 89 | const unsigned int __max_iter = 1000; | 
|---|
|  | 90 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
|  | 91 | { | 
|---|
|  | 92 | __term *= - __x / __i; | 
|---|
|  | 93 | if (std::abs(__term) < __eps) | 
|---|
|  | 94 | break; | 
|---|
|  | 95 | if (__term >= _Tp(0)) | 
|---|
|  | 96 | __esum += __term / __i; | 
|---|
|  | 97 | else | 
|---|
|  | 98 | __osum += __term / __i; | 
|---|
|  | 99 | } | 
|---|
|  | 100 |  | 
|---|
|  | 101 | return - __esum - __osum | 
|---|
|  | 102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); | 
|---|
|  | 103 | } | 
|---|
|  | 104 |  | 
|---|
|  | 105 |  | 
|---|
|  | 106 | /** | 
|---|
|  | 107 | *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
|---|
|  | 108 | *          by asymptotic expansion. | 
|---|
|  | 109 | * | 
|---|
|  | 110 | *   The exponential integral is given by | 
|---|
|  | 111 | *          \f[ | 
|---|
|  | 112 | *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
|---|
|  | 113 | *          \f] | 
|---|
|  | 114 | * | 
|---|
|  | 115 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 116 | *   @return  The exponential integral. | 
|---|
|  | 117 | */ | 
|---|
|  | 118 | template<typename _Tp> | 
|---|
|  | 119 | _Tp | 
|---|
|  | 120 | __expint_E1_asymp(_Tp __x) | 
|---|
|  | 121 | { | 
|---|
|  | 122 | _Tp __term = _Tp(1); | 
|---|
|  | 123 | _Tp __esum = _Tp(1); | 
|---|
|  | 124 | _Tp __osum = _Tp(0); | 
|---|
|  | 125 | const unsigned int __max_iter = 1000; | 
|---|
|  | 126 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
|  | 127 | { | 
|---|
|  | 128 | _Tp __prev = __term; | 
|---|
|  | 129 | __term *= - __i / __x; | 
|---|
|  | 130 | if (std::abs(__term) > std::abs(__prev)) | 
|---|
|  | 131 | break; | 
|---|
|  | 132 | if (__term >= _Tp(0)) | 
|---|
|  | 133 | __esum += __term; | 
|---|
|  | 134 | else | 
|---|
|  | 135 | __osum += __term; | 
|---|
|  | 136 | } | 
|---|
|  | 137 |  | 
|---|
|  | 138 | return std::exp(- __x) * (__esum + __osum) / __x; | 
|---|
|  | 139 | } | 
|---|
|  | 140 |  | 
|---|
|  | 141 |  | 
|---|
|  | 142 | /** | 
|---|
|  | 143 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
|  | 144 | *          by series summation. | 
|---|
|  | 145 | * | 
|---|
|  | 146 | *   The exponential integral is given by | 
|---|
|  | 147 | *          \f[ | 
|---|
|  | 148 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 149 | *          \f] | 
|---|
|  | 150 | * | 
|---|
|  | 151 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 152 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 153 | *   @return  The exponential integral. | 
|---|
|  | 154 | */ | 
|---|
|  | 155 | template<typename _Tp> | 
|---|
|  | 156 | _Tp | 
|---|
|  | 157 | __expint_En_series(unsigned int __n, _Tp __x) | 
|---|
|  | 158 | { | 
|---|
|  | 159 | const unsigned int __max_iter = 1000; | 
|---|
|  | 160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
|  | 161 | const int __nm1 = __n - 1; | 
|---|
|  | 162 | _Tp __ans = (__nm1 != 0 | 
|---|
|  | 163 | ? _Tp(1) / __nm1 : -std::log(__x) | 
|---|
|  | 164 | - __numeric_constants<_Tp>::__gamma_e()); | 
|---|
|  | 165 | _Tp __fact = _Tp(1); | 
|---|
|  | 166 | for (int __i = 1; __i <= __max_iter; ++__i) | 
|---|
|  | 167 | { | 
|---|
|  | 168 | __fact *= -__x / _Tp(__i); | 
|---|
|  | 169 | _Tp __del; | 
|---|
|  | 170 | if ( __i != __nm1 ) | 
|---|
|  | 171 | __del = -__fact / _Tp(__i - __nm1); | 
|---|
|  | 172 | else | 
|---|
|  | 173 | { | 
|---|
|  | 174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); | 
|---|
|  | 175 | for (int __ii = 1; __ii <= __nm1; ++__ii) | 
|---|
|  | 176 | __psi += _Tp(1) / _Tp(__ii); | 
|---|
|  | 177 | __del = __fact * (__psi - std::log(__x)); | 
|---|
|  | 178 | } | 
|---|
|  | 179 | __ans += __del; | 
|---|
|  | 180 | if (std::abs(__del) < __eps * std::abs(__ans)) | 
|---|
|  | 181 | return __ans; | 
|---|
|  | 182 | } | 
|---|
|  | 183 | std::__throw_runtime_error(__N("Series summation failed " | 
|---|
|  | 184 | "in __expint_En_series.")); | 
|---|
|  | 185 | } | 
|---|
|  | 186 |  | 
|---|
|  | 187 |  | 
|---|
|  | 188 | /** | 
|---|
|  | 189 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
|  | 190 | *          by continued fractions. | 
|---|
|  | 191 | * | 
|---|
|  | 192 | *   The exponential integral is given by | 
|---|
|  | 193 | *          \f[ | 
|---|
|  | 194 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 195 | *          \f] | 
|---|
|  | 196 | * | 
|---|
|  | 197 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 198 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 199 | *   @return  The exponential integral. | 
|---|
|  | 200 | */ | 
|---|
|  | 201 | template<typename _Tp> | 
|---|
|  | 202 | _Tp | 
|---|
|  | 203 | __expint_En_cont_frac(unsigned int __n, _Tp __x) | 
|---|
|  | 204 | { | 
|---|
|  | 205 | const unsigned int __max_iter = 1000; | 
|---|
|  | 206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
|---|
|  | 207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min(); | 
|---|
|  | 208 | const int __nm1 = __n - 1; | 
|---|
|  | 209 | _Tp __b = __x + _Tp(__n); | 
|---|
|  | 210 | _Tp __c = _Tp(1) / __fp_min; | 
|---|
|  | 211 | _Tp __d = _Tp(1) / __b; | 
|---|
|  | 212 | _Tp __h = __d; | 
|---|
|  | 213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) | 
|---|
|  | 214 | { | 
|---|
|  | 215 | _Tp __a = -_Tp(__i * (__nm1 + __i)); | 
|---|
|  | 216 | __b += _Tp(2); | 
|---|
|  | 217 | __d = _Tp(1) / (__a * __d + __b); | 
|---|
|  | 218 | __c = __b + __a / __c; | 
|---|
|  | 219 | const _Tp __del = __c * __d; | 
|---|
|  | 220 | __h *= __del; | 
|---|
|  | 221 | if (std::abs(__del - _Tp(1)) < __eps) | 
|---|
|  | 222 | { | 
|---|
|  | 223 | const _Tp __ans = __h * std::exp(-__x); | 
|---|
|  | 224 | return __ans; | 
|---|
|  | 225 | } | 
|---|
|  | 226 | } | 
|---|
|  | 227 | std::__throw_runtime_error(__N("Continued fraction failed " | 
|---|
|  | 228 | "in __expint_En_cont_frac.")); | 
|---|
|  | 229 | } | 
|---|
|  | 230 |  | 
|---|
|  | 231 |  | 
|---|
|  | 232 | /** | 
|---|
|  | 233 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
|  | 234 | *          by recursion.  Use upward recursion for @f$ x < n @f$ | 
|---|
|  | 235 | *          and downward recursion (Miller's algorithm) otherwise. | 
|---|
|  | 236 | * | 
|---|
|  | 237 | *   The exponential integral is given by | 
|---|
|  | 238 | *          \f[ | 
|---|
|  | 239 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 240 | *          \f] | 
|---|
|  | 241 | * | 
|---|
|  | 242 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 243 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 244 | *   @return  The exponential integral. | 
|---|
|  | 245 | */ | 
|---|
|  | 246 | template<typename _Tp> | 
|---|
|  | 247 | _Tp | 
|---|
|  | 248 | __expint_En_recursion(unsigned int __n, _Tp __x) | 
|---|
|  | 249 | { | 
|---|
|  | 250 | _Tp __En; | 
|---|
|  | 251 | _Tp __E1 = __expint_E1(__x); | 
|---|
|  | 252 | if (__x < _Tp(__n)) | 
|---|
|  | 253 | { | 
|---|
|  | 254 | //  Forward recursion is stable only for n < x. | 
|---|
|  | 255 | __En = __E1; | 
|---|
|  | 256 | for (unsigned int __j = 2; __j < __n; ++__j) | 
|---|
|  | 257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); | 
|---|
|  | 258 | } | 
|---|
|  | 259 | else | 
|---|
|  | 260 | { | 
|---|
|  | 261 | //  Backward recursion is stable only for n >= x. | 
|---|
|  | 262 | __En = _Tp(1); | 
|---|
|  | 263 | const int __N = __n + 20;  //  TODO: Check this starting number. | 
|---|
|  | 264 | _Tp __save = _Tp(0); | 
|---|
|  | 265 | for (int __j = __N; __j > 0; --__j) | 
|---|
|  | 266 | { | 
|---|
|  | 267 | __En = (std::exp(-__x) - __j * __En) / __x; | 
|---|
|  | 268 | if (__j == __n) | 
|---|
|  | 269 | __save = __En; | 
|---|
|  | 270 | } | 
|---|
|  | 271 | _Tp __norm = __En / __E1; | 
|---|
|  | 272 | __En /= __norm; | 
|---|
|  | 273 | } | 
|---|
|  | 274 |  | 
|---|
|  | 275 | return __En; | 
|---|
|  | 276 | } | 
|---|
|  | 277 |  | 
|---|
|  | 278 | /** | 
|---|
|  | 279 | *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
|---|
|  | 280 | *          by series summation. | 
|---|
|  | 281 | * | 
|---|
|  | 282 | *   The exponential integral is given by | 
|---|
|  | 283 | *          \f[ | 
|---|
|  | 284 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
|  | 285 | *          \f] | 
|---|
|  | 286 | * | 
|---|
|  | 287 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 288 | *   @return  The exponential integral. | 
|---|
|  | 289 | */ | 
|---|
|  | 290 | template<typename _Tp> | 
|---|
|  | 291 | _Tp | 
|---|
|  | 292 | __expint_Ei_series(_Tp __x) | 
|---|
|  | 293 | { | 
|---|
|  | 294 | _Tp __term = _Tp(1); | 
|---|
|  | 295 | _Tp __sum = _Tp(0); | 
|---|
|  | 296 | const unsigned int __max_iter = 1000; | 
|---|
|  | 297 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
|  | 298 | { | 
|---|
|  | 299 | __term *= __x / __i; | 
|---|
|  | 300 | __sum += __term / __i; | 
|---|
|  | 301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) | 
|---|
|  | 302 | break; | 
|---|
|  | 303 | } | 
|---|
|  | 304 |  | 
|---|
|  | 305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); | 
|---|
|  | 306 | } | 
|---|
|  | 307 |  | 
|---|
|  | 308 |  | 
|---|
|  | 309 | /** | 
|---|
|  | 310 | *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
|---|
|  | 311 | *          by asymptotic expansion. | 
|---|
|  | 312 | * | 
|---|
|  | 313 | *   The exponential integral is given by | 
|---|
|  | 314 | *          \f[ | 
|---|
|  | 315 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
|  | 316 | *          \f] | 
|---|
|  | 317 | * | 
|---|
|  | 318 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 319 | *   @return  The exponential integral. | 
|---|
|  | 320 | */ | 
|---|
|  | 321 | template<typename _Tp> | 
|---|
|  | 322 | _Tp | 
|---|
|  | 323 | __expint_Ei_asymp(_Tp __x) | 
|---|
|  | 324 | { | 
|---|
|  | 325 | _Tp __term = _Tp(1); | 
|---|
|  | 326 | _Tp __sum = _Tp(1); | 
|---|
|  | 327 | const unsigned int __max_iter = 1000; | 
|---|
|  | 328 | for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
|---|
|  | 329 | { | 
|---|
|  | 330 | _Tp __prev = __term; | 
|---|
|  | 331 | __term *= __i / __x; | 
|---|
|  | 332 | if (__term < std::numeric_limits<_Tp>::epsilon()) | 
|---|
|  | 333 | break; | 
|---|
|  | 334 | if (__term >= __prev) | 
|---|
|  | 335 | break; | 
|---|
|  | 336 | __sum += __term; | 
|---|
|  | 337 | } | 
|---|
|  | 338 |  | 
|---|
|  | 339 | return std::exp(__x) * __sum / __x; | 
|---|
|  | 340 | } | 
|---|
|  | 341 |  | 
|---|
|  | 342 |  | 
|---|
|  | 343 | /** | 
|---|
|  | 344 | *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
|---|
|  | 345 | * | 
|---|
|  | 346 | *   The exponential integral is given by | 
|---|
|  | 347 | *          \f[ | 
|---|
|  | 348 | *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
|  | 349 | *          \f] | 
|---|
|  | 350 | * | 
|---|
|  | 351 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 352 | *   @return  The exponential integral. | 
|---|
|  | 353 | */ | 
|---|
|  | 354 | template<typename _Tp> | 
|---|
|  | 355 | _Tp | 
|---|
|  | 356 | __expint_Ei(_Tp __x) | 
|---|
|  | 357 | { | 
|---|
|  | 358 | if (__x < _Tp(0)) | 
|---|
|  | 359 | return -__expint_E1(-__x); | 
|---|
|  | 360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) | 
|---|
|  | 361 | return __expint_Ei_series(__x); | 
|---|
|  | 362 | else | 
|---|
|  | 363 | return __expint_Ei_asymp(__x); | 
|---|
|  | 364 | } | 
|---|
|  | 365 |  | 
|---|
|  | 366 |  | 
|---|
|  | 367 | /** | 
|---|
|  | 368 | *   @brief Return the exponential integral @f$ E_1(x) @f$. | 
|---|
|  | 369 | * | 
|---|
|  | 370 | *   The exponential integral is given by | 
|---|
|  | 371 | *          \f[ | 
|---|
|  | 372 | *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
|---|
|  | 373 | *          \f] | 
|---|
|  | 374 | * | 
|---|
|  | 375 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 376 | *   @return  The exponential integral. | 
|---|
|  | 377 | */ | 
|---|
|  | 378 | template<typename _Tp> | 
|---|
|  | 379 | _Tp | 
|---|
|  | 380 | __expint_E1(_Tp __x) | 
|---|
|  | 381 | { | 
|---|
|  | 382 | if (__x < _Tp(0)) | 
|---|
|  | 383 | return -__expint_Ei(-__x); | 
|---|
|  | 384 | else if (__x < _Tp(1)) | 
|---|
|  | 385 | return __expint_E1_series(__x); | 
|---|
|  | 386 | else if (__x < _Tp(100))  //  TODO: Find a good asymptotic switch point. | 
|---|
|  | 387 | return __expint_En_cont_frac(1, __x); | 
|---|
|  | 388 | else | 
|---|
|  | 389 | return __expint_E1_asymp(__x); | 
|---|
|  | 390 | } | 
|---|
|  | 391 |  | 
|---|
|  | 392 |  | 
|---|
|  | 393 | /** | 
|---|
|  | 394 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
|  | 395 | *          for large argument. | 
|---|
|  | 396 | * | 
|---|
|  | 397 | *   The exponential integral is given by | 
|---|
|  | 398 | *          \f[ | 
|---|
|  | 399 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 400 | *          \f] | 
|---|
|  | 401 | * | 
|---|
|  | 402 | *   This is something of an extension. | 
|---|
|  | 403 | * | 
|---|
|  | 404 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 405 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 406 | *   @return  The exponential integral. | 
|---|
|  | 407 | */ | 
|---|
|  | 408 | template<typename _Tp> | 
|---|
|  | 409 | _Tp | 
|---|
|  | 410 | __expint_asymp(unsigned int __n, _Tp __x) | 
|---|
|  | 411 | { | 
|---|
|  | 412 | _Tp __term = _Tp(1); | 
|---|
|  | 413 | _Tp __sum = _Tp(1); | 
|---|
|  | 414 | for (unsigned int __i = 1; __i <= __n; ++__i) | 
|---|
|  | 415 | { | 
|---|
|  | 416 | _Tp __prev = __term; | 
|---|
|  | 417 | __term *= -(__n - __i + 1) / __x; | 
|---|
|  | 418 | if (std::abs(__term) > std::abs(__prev)) | 
|---|
|  | 419 | break; | 
|---|
|  | 420 | __sum += __term; | 
|---|
|  | 421 | } | 
|---|
|  | 422 |  | 
|---|
|  | 423 | return std::exp(-__x) * __sum / __x; | 
|---|
|  | 424 | } | 
|---|
|  | 425 |  | 
|---|
|  | 426 |  | 
|---|
|  | 427 | /** | 
|---|
|  | 428 | *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
|---|
|  | 429 | *          for large order. | 
|---|
|  | 430 | * | 
|---|
|  | 431 | *   The exponential integral is given by | 
|---|
|  | 432 | *          \f[ | 
|---|
|  | 433 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 434 | *          \f] | 
|---|
|  | 435 | * | 
|---|
|  | 436 | *   This is something of an extension. | 
|---|
|  | 437 | * | 
|---|
|  | 438 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 439 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 440 | *   @return  The exponential integral. | 
|---|
|  | 441 | */ | 
|---|
|  | 442 | template<typename _Tp> | 
|---|
|  | 443 | _Tp | 
|---|
|  | 444 | __expint_large_n(unsigned int __n, _Tp __x) | 
|---|
|  | 445 | { | 
|---|
|  | 446 | const _Tp __xpn = __x + __n; | 
|---|
|  | 447 | const _Tp __xpn2 = __xpn * __xpn; | 
|---|
|  | 448 | _Tp __term = _Tp(1); | 
|---|
|  | 449 | _Tp __sum = _Tp(1); | 
|---|
|  | 450 | for (unsigned int __i = 1; __i <= __n; ++__i) | 
|---|
|  | 451 | { | 
|---|
|  | 452 | _Tp __prev = __term; | 
|---|
|  | 453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; | 
|---|
|  | 454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) | 
|---|
|  | 455 | break; | 
|---|
|  | 456 | __sum += __term; | 
|---|
|  | 457 | } | 
|---|
|  | 458 |  | 
|---|
|  | 459 | return std::exp(-__x) * __sum / __xpn; | 
|---|
|  | 460 | } | 
|---|
|  | 461 |  | 
|---|
|  | 462 |  | 
|---|
|  | 463 | /** | 
|---|
|  | 464 | *   @brief Return the exponential integral @f$ E_n(x) @f$. | 
|---|
|  | 465 | * | 
|---|
|  | 466 | *   The exponential integral is given by | 
|---|
|  | 467 | *          \f[ | 
|---|
|  | 468 | *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
|---|
|  | 469 | *          \f] | 
|---|
|  | 470 | *   This is something of an extension. | 
|---|
|  | 471 | * | 
|---|
|  | 472 | *   @param  __n  The order of the exponential integral function. | 
|---|
|  | 473 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 474 | *   @return  The exponential integral. | 
|---|
|  | 475 | */ | 
|---|
|  | 476 | template<typename _Tp> | 
|---|
|  | 477 | _Tp | 
|---|
|  | 478 | __expint(unsigned int __n, _Tp __x) | 
|---|
|  | 479 | { | 
|---|
|  | 480 | //  Return NaN on NaN input. | 
|---|
|  | 481 | if (__isnan(__x)) | 
|---|
|  | 482 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
|  | 483 | else if (__n <= 1 && __x == _Tp(0)) | 
|---|
|  | 484 | return std::numeric_limits<_Tp>::infinity(); | 
|---|
|  | 485 | else | 
|---|
|  | 486 | { | 
|---|
|  | 487 | _Tp __E0 = std::exp(__x) / __x; | 
|---|
|  | 488 | if (__n == 0) | 
|---|
|  | 489 | return __E0; | 
|---|
|  | 490 |  | 
|---|
|  | 491 | _Tp __E1 = __expint_E1(__x); | 
|---|
|  | 492 | if (__n == 1) | 
|---|
|  | 493 | return __E1; | 
|---|
|  | 494 |  | 
|---|
|  | 495 | if (__x == _Tp(0)) | 
|---|
|  | 496 | return _Tp(1) / static_cast<_Tp>(__n - 1); | 
|---|
|  | 497 |  | 
|---|
|  | 498 | _Tp __En = __expint_En_recursion(__n, __x); | 
|---|
|  | 499 |  | 
|---|
|  | 500 | return __En; | 
|---|
|  | 501 | } | 
|---|
|  | 502 | } | 
|---|
|  | 503 |  | 
|---|
|  | 504 |  | 
|---|
|  | 505 | /** | 
|---|
|  | 506 | *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
|---|
|  | 507 | * | 
|---|
|  | 508 | *   The exponential integral is given by | 
|---|
|  | 509 | *   \f[ | 
|---|
|  | 510 | *     Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
|---|
|  | 511 | *   \f] | 
|---|
|  | 512 | * | 
|---|
|  | 513 | *   @param  __x  The argument of the exponential integral function. | 
|---|
|  | 514 | *   @return  The exponential integral. | 
|---|
|  | 515 | */ | 
|---|
|  | 516 | template<typename _Tp> | 
|---|
|  | 517 | inline _Tp | 
|---|
|  | 518 | __expint(_Tp __x) | 
|---|
|  | 519 | { | 
|---|
|  | 520 | if (__isnan(__x)) | 
|---|
|  | 521 | return std::numeric_limits<_Tp>::quiet_NaN(); | 
|---|
|  | 522 | else | 
|---|
|  | 523 | return __expint_Ei(__x); | 
|---|
|  | 524 | } | 
|---|
|  | 525 | } // namespace __detail | 
|---|
|  | 526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
|---|
|  | 527 | } // namespace tr1 | 
|---|
|  | 528 | #endif | 
|---|
|  | 529 |  | 
|---|
|  | 530 | _GLIBCXX_END_NAMESPACE_VERSION | 
|---|
|  | 531 | } | 
|---|
|  | 532 |  | 
|---|
|  | 533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
|---|