1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/exp_integral.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | //
|
---|
36 | // (1) Handbook of Mathematical Functions,
|
---|
37 | // Ed. by Milton Abramowitz and Irene A. Stegun,
|
---|
38 | // Dover Publications, New-York, Section 5, pp. 228-251.
|
---|
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
42 | // 2nd ed, pp. 222-225.
|
---|
43 | //
|
---|
44 |
|
---|
45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
|
---|
46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
|
---|
47 |
|
---|
48 | #include <tr1/special_function_util.h>
|
---|
49 |
|
---|
50 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
51 | {
|
---|
52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
53 |
|
---|
54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
55 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
56 | namespace tr1
|
---|
57 | {
|
---|
58 | #else
|
---|
59 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
60 | #endif
|
---|
61 | // [5.2] Special functions
|
---|
62 |
|
---|
63 | // Implementation-space details.
|
---|
64 | namespace __detail
|
---|
65 | {
|
---|
66 | template<typename _Tp> _Tp __expint_E1(_Tp);
|
---|
67 |
|
---|
68 | /**
|
---|
69 | * @brief Return the exponential integral @f$ E_1(x) @f$
|
---|
70 | * by series summation. This should be good
|
---|
71 | * for @f$ x < 1 @f$.
|
---|
72 | *
|
---|
73 | * The exponential integral is given by
|
---|
74 | * \f[
|
---|
75 | * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
|
---|
76 | * \f]
|
---|
77 | *
|
---|
78 | * @param __x The argument of the exponential integral function.
|
---|
79 | * @return The exponential integral.
|
---|
80 | */
|
---|
81 | template<typename _Tp>
|
---|
82 | _Tp
|
---|
83 | __expint_E1_series(_Tp __x)
|
---|
84 | {
|
---|
85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
86 | _Tp __term = _Tp(1);
|
---|
87 | _Tp __esum = _Tp(0);
|
---|
88 | _Tp __osum = _Tp(0);
|
---|
89 | const unsigned int __max_iter = 1000;
|
---|
90 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
91 | {
|
---|
92 | __term *= - __x / __i;
|
---|
93 | if (std::abs(__term) < __eps)
|
---|
94 | break;
|
---|
95 | if (__term >= _Tp(0))
|
---|
96 | __esum += __term / __i;
|
---|
97 | else
|
---|
98 | __osum += __term / __i;
|
---|
99 | }
|
---|
100 |
|
---|
101 | return - __esum - __osum
|
---|
102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
|
---|
103 | }
|
---|
104 |
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * @brief Return the exponential integral @f$ E_1(x) @f$
|
---|
108 | * by asymptotic expansion.
|
---|
109 | *
|
---|
110 | * The exponential integral is given by
|
---|
111 | * \f[
|
---|
112 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
|
---|
113 | * \f]
|
---|
114 | *
|
---|
115 | * @param __x The argument of the exponential integral function.
|
---|
116 | * @return The exponential integral.
|
---|
117 | */
|
---|
118 | template<typename _Tp>
|
---|
119 | _Tp
|
---|
120 | __expint_E1_asymp(_Tp __x)
|
---|
121 | {
|
---|
122 | _Tp __term = _Tp(1);
|
---|
123 | _Tp __esum = _Tp(1);
|
---|
124 | _Tp __osum = _Tp(0);
|
---|
125 | const unsigned int __max_iter = 1000;
|
---|
126 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
127 | {
|
---|
128 | _Tp __prev = __term;
|
---|
129 | __term *= - __i / __x;
|
---|
130 | if (std::abs(__term) > std::abs(__prev))
|
---|
131 | break;
|
---|
132 | if (__term >= _Tp(0))
|
---|
133 | __esum += __term;
|
---|
134 | else
|
---|
135 | __osum += __term;
|
---|
136 | }
|
---|
137 |
|
---|
138 | return std::exp(- __x) * (__esum + __osum) / __x;
|
---|
139 | }
|
---|
140 |
|
---|
141 |
|
---|
142 | /**
|
---|
143 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
144 | * by series summation.
|
---|
145 | *
|
---|
146 | * The exponential integral is given by
|
---|
147 | * \f[
|
---|
148 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
149 | * \f]
|
---|
150 | *
|
---|
151 | * @param __n The order of the exponential integral function.
|
---|
152 | * @param __x The argument of the exponential integral function.
|
---|
153 | * @return The exponential integral.
|
---|
154 | */
|
---|
155 | template<typename _Tp>
|
---|
156 | _Tp
|
---|
157 | __expint_En_series(unsigned int __n, _Tp __x)
|
---|
158 | {
|
---|
159 | const unsigned int __max_iter = 1000;
|
---|
160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
161 | const int __nm1 = __n - 1;
|
---|
162 | _Tp __ans = (__nm1 != 0
|
---|
163 | ? _Tp(1) / __nm1 : -std::log(__x)
|
---|
164 | - __numeric_constants<_Tp>::__gamma_e());
|
---|
165 | _Tp __fact = _Tp(1);
|
---|
166 | for (int __i = 1; __i <= __max_iter; ++__i)
|
---|
167 | {
|
---|
168 | __fact *= -__x / _Tp(__i);
|
---|
169 | _Tp __del;
|
---|
170 | if ( __i != __nm1 )
|
---|
171 | __del = -__fact / _Tp(__i - __nm1);
|
---|
172 | else
|
---|
173 | {
|
---|
174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e();
|
---|
175 | for (int __ii = 1; __ii <= __nm1; ++__ii)
|
---|
176 | __psi += _Tp(1) / _Tp(__ii);
|
---|
177 | __del = __fact * (__psi - std::log(__x));
|
---|
178 | }
|
---|
179 | __ans += __del;
|
---|
180 | if (std::abs(__del) < __eps * std::abs(__ans))
|
---|
181 | return __ans;
|
---|
182 | }
|
---|
183 | std::__throw_runtime_error(__N("Series summation failed "
|
---|
184 | "in __expint_En_series."));
|
---|
185 | }
|
---|
186 |
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
190 | * by continued fractions.
|
---|
191 | *
|
---|
192 | * The exponential integral is given by
|
---|
193 | * \f[
|
---|
194 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
195 | * \f]
|
---|
196 | *
|
---|
197 | * @param __n The order of the exponential integral function.
|
---|
198 | * @param __x The argument of the exponential integral function.
|
---|
199 | * @return The exponential integral.
|
---|
200 | */
|
---|
201 | template<typename _Tp>
|
---|
202 | _Tp
|
---|
203 | __expint_En_cont_frac(unsigned int __n, _Tp __x)
|
---|
204 | {
|
---|
205 | const unsigned int __max_iter = 1000;
|
---|
206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min();
|
---|
208 | const int __nm1 = __n - 1;
|
---|
209 | _Tp __b = __x + _Tp(__n);
|
---|
210 | _Tp __c = _Tp(1) / __fp_min;
|
---|
211 | _Tp __d = _Tp(1) / __b;
|
---|
212 | _Tp __h = __d;
|
---|
213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
|
---|
214 | {
|
---|
215 | _Tp __a = -_Tp(__i * (__nm1 + __i));
|
---|
216 | __b += _Tp(2);
|
---|
217 | __d = _Tp(1) / (__a * __d + __b);
|
---|
218 | __c = __b + __a / __c;
|
---|
219 | const _Tp __del = __c * __d;
|
---|
220 | __h *= __del;
|
---|
221 | if (std::abs(__del - _Tp(1)) < __eps)
|
---|
222 | {
|
---|
223 | const _Tp __ans = __h * std::exp(-__x);
|
---|
224 | return __ans;
|
---|
225 | }
|
---|
226 | }
|
---|
227 | std::__throw_runtime_error(__N("Continued fraction failed "
|
---|
228 | "in __expint_En_cont_frac."));
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | /**
|
---|
233 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
234 | * by recursion. Use upward recursion for @f$ x < n @f$
|
---|
235 | * and downward recursion (Miller's algorithm) otherwise.
|
---|
236 | *
|
---|
237 | * The exponential integral is given by
|
---|
238 | * \f[
|
---|
239 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
240 | * \f]
|
---|
241 | *
|
---|
242 | * @param __n The order of the exponential integral function.
|
---|
243 | * @param __x The argument of the exponential integral function.
|
---|
244 | * @return The exponential integral.
|
---|
245 | */
|
---|
246 | template<typename _Tp>
|
---|
247 | _Tp
|
---|
248 | __expint_En_recursion(unsigned int __n, _Tp __x)
|
---|
249 | {
|
---|
250 | _Tp __En;
|
---|
251 | _Tp __E1 = __expint_E1(__x);
|
---|
252 | if (__x < _Tp(__n))
|
---|
253 | {
|
---|
254 | // Forward recursion is stable only for n < x.
|
---|
255 | __En = __E1;
|
---|
256 | for (unsigned int __j = 2; __j < __n; ++__j)
|
---|
257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
|
---|
258 | }
|
---|
259 | else
|
---|
260 | {
|
---|
261 | // Backward recursion is stable only for n >= x.
|
---|
262 | __En = _Tp(1);
|
---|
263 | const int __N = __n + 20; // TODO: Check this starting number.
|
---|
264 | _Tp __save = _Tp(0);
|
---|
265 | for (int __j = __N; __j > 0; --__j)
|
---|
266 | {
|
---|
267 | __En = (std::exp(-__x) - __j * __En) / __x;
|
---|
268 | if (__j == __n)
|
---|
269 | __save = __En;
|
---|
270 | }
|
---|
271 | _Tp __norm = __En / __E1;
|
---|
272 | __En /= __norm;
|
---|
273 | }
|
---|
274 |
|
---|
275 | return __En;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * @brief Return the exponential integral @f$ Ei(x) @f$
|
---|
280 | * by series summation.
|
---|
281 | *
|
---|
282 | * The exponential integral is given by
|
---|
283 | * \f[
|
---|
284 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
285 | * \f]
|
---|
286 | *
|
---|
287 | * @param __x The argument of the exponential integral function.
|
---|
288 | * @return The exponential integral.
|
---|
289 | */
|
---|
290 | template<typename _Tp>
|
---|
291 | _Tp
|
---|
292 | __expint_Ei_series(_Tp __x)
|
---|
293 | {
|
---|
294 | _Tp __term = _Tp(1);
|
---|
295 | _Tp __sum = _Tp(0);
|
---|
296 | const unsigned int __max_iter = 1000;
|
---|
297 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
298 | {
|
---|
299 | __term *= __x / __i;
|
---|
300 | __sum += __term / __i;
|
---|
301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
|
---|
302 | break;
|
---|
303 | }
|
---|
304 |
|
---|
305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
|
---|
306 | }
|
---|
307 |
|
---|
308 |
|
---|
309 | /**
|
---|
310 | * @brief Return the exponential integral @f$ Ei(x) @f$
|
---|
311 | * by asymptotic expansion.
|
---|
312 | *
|
---|
313 | * The exponential integral is given by
|
---|
314 | * \f[
|
---|
315 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
316 | * \f]
|
---|
317 | *
|
---|
318 | * @param __x The argument of the exponential integral function.
|
---|
319 | * @return The exponential integral.
|
---|
320 | */
|
---|
321 | template<typename _Tp>
|
---|
322 | _Tp
|
---|
323 | __expint_Ei_asymp(_Tp __x)
|
---|
324 | {
|
---|
325 | _Tp __term = _Tp(1);
|
---|
326 | _Tp __sum = _Tp(1);
|
---|
327 | const unsigned int __max_iter = 1000;
|
---|
328 | for (unsigned int __i = 1; __i < __max_iter; ++__i)
|
---|
329 | {
|
---|
330 | _Tp __prev = __term;
|
---|
331 | __term *= __i / __x;
|
---|
332 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
333 | break;
|
---|
334 | if (__term >= __prev)
|
---|
335 | break;
|
---|
336 | __sum += __term;
|
---|
337 | }
|
---|
338 |
|
---|
339 | return std::exp(__x) * __sum / __x;
|
---|
340 | }
|
---|
341 |
|
---|
342 |
|
---|
343 | /**
|
---|
344 | * @brief Return the exponential integral @f$ Ei(x) @f$.
|
---|
345 | *
|
---|
346 | * The exponential integral is given by
|
---|
347 | * \f[
|
---|
348 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
349 | * \f]
|
---|
350 | *
|
---|
351 | * @param __x The argument of the exponential integral function.
|
---|
352 | * @return The exponential integral.
|
---|
353 | */
|
---|
354 | template<typename _Tp>
|
---|
355 | _Tp
|
---|
356 | __expint_Ei(_Tp __x)
|
---|
357 | {
|
---|
358 | if (__x < _Tp(0))
|
---|
359 | return -__expint_E1(-__x);
|
---|
360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
|
---|
361 | return __expint_Ei_series(__x);
|
---|
362 | else
|
---|
363 | return __expint_Ei_asymp(__x);
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | /**
|
---|
368 | * @brief Return the exponential integral @f$ E_1(x) @f$.
|
---|
369 | *
|
---|
370 | * The exponential integral is given by
|
---|
371 | * \f[
|
---|
372 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
|
---|
373 | * \f]
|
---|
374 | *
|
---|
375 | * @param __x The argument of the exponential integral function.
|
---|
376 | * @return The exponential integral.
|
---|
377 | */
|
---|
378 | template<typename _Tp>
|
---|
379 | _Tp
|
---|
380 | __expint_E1(_Tp __x)
|
---|
381 | {
|
---|
382 | if (__x < _Tp(0))
|
---|
383 | return -__expint_Ei(-__x);
|
---|
384 | else if (__x < _Tp(1))
|
---|
385 | return __expint_E1_series(__x);
|
---|
386 | else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
|
---|
387 | return __expint_En_cont_frac(1, __x);
|
---|
388 | else
|
---|
389 | return __expint_E1_asymp(__x);
|
---|
390 | }
|
---|
391 |
|
---|
392 |
|
---|
393 | /**
|
---|
394 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
395 | * for large argument.
|
---|
396 | *
|
---|
397 | * The exponential integral is given by
|
---|
398 | * \f[
|
---|
399 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
400 | * \f]
|
---|
401 | *
|
---|
402 | * This is something of an extension.
|
---|
403 | *
|
---|
404 | * @param __n The order of the exponential integral function.
|
---|
405 | * @param __x The argument of the exponential integral function.
|
---|
406 | * @return The exponential integral.
|
---|
407 | */
|
---|
408 | template<typename _Tp>
|
---|
409 | _Tp
|
---|
410 | __expint_asymp(unsigned int __n, _Tp __x)
|
---|
411 | {
|
---|
412 | _Tp __term = _Tp(1);
|
---|
413 | _Tp __sum = _Tp(1);
|
---|
414 | for (unsigned int __i = 1; __i <= __n; ++__i)
|
---|
415 | {
|
---|
416 | _Tp __prev = __term;
|
---|
417 | __term *= -(__n - __i + 1) / __x;
|
---|
418 | if (std::abs(__term) > std::abs(__prev))
|
---|
419 | break;
|
---|
420 | __sum += __term;
|
---|
421 | }
|
---|
422 |
|
---|
423 | return std::exp(-__x) * __sum / __x;
|
---|
424 | }
|
---|
425 |
|
---|
426 |
|
---|
427 | /**
|
---|
428 | * @brief Return the exponential integral @f$ E_n(x) @f$
|
---|
429 | * for large order.
|
---|
430 | *
|
---|
431 | * The exponential integral is given by
|
---|
432 | * \f[
|
---|
433 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
434 | * \f]
|
---|
435 | *
|
---|
436 | * This is something of an extension.
|
---|
437 | *
|
---|
438 | * @param __n The order of the exponential integral function.
|
---|
439 | * @param __x The argument of the exponential integral function.
|
---|
440 | * @return The exponential integral.
|
---|
441 | */
|
---|
442 | template<typename _Tp>
|
---|
443 | _Tp
|
---|
444 | __expint_large_n(unsigned int __n, _Tp __x)
|
---|
445 | {
|
---|
446 | const _Tp __xpn = __x + __n;
|
---|
447 | const _Tp __xpn2 = __xpn * __xpn;
|
---|
448 | _Tp __term = _Tp(1);
|
---|
449 | _Tp __sum = _Tp(1);
|
---|
450 | for (unsigned int __i = 1; __i <= __n; ++__i)
|
---|
451 | {
|
---|
452 | _Tp __prev = __term;
|
---|
453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
|
---|
454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
|
---|
455 | break;
|
---|
456 | __sum += __term;
|
---|
457 | }
|
---|
458 |
|
---|
459 | return std::exp(-__x) * __sum / __xpn;
|
---|
460 | }
|
---|
461 |
|
---|
462 |
|
---|
463 | /**
|
---|
464 | * @brief Return the exponential integral @f$ E_n(x) @f$.
|
---|
465 | *
|
---|
466 | * The exponential integral is given by
|
---|
467 | * \f[
|
---|
468 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
|
---|
469 | * \f]
|
---|
470 | * This is something of an extension.
|
---|
471 | *
|
---|
472 | * @param __n The order of the exponential integral function.
|
---|
473 | * @param __x The argument of the exponential integral function.
|
---|
474 | * @return The exponential integral.
|
---|
475 | */
|
---|
476 | template<typename _Tp>
|
---|
477 | _Tp
|
---|
478 | __expint(unsigned int __n, _Tp __x)
|
---|
479 | {
|
---|
480 | // Return NaN on NaN input.
|
---|
481 | if (__isnan(__x))
|
---|
482 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
483 | else if (__n <= 1 && __x == _Tp(0))
|
---|
484 | return std::numeric_limits<_Tp>::infinity();
|
---|
485 | else
|
---|
486 | {
|
---|
487 | _Tp __E0 = std::exp(__x) / __x;
|
---|
488 | if (__n == 0)
|
---|
489 | return __E0;
|
---|
490 |
|
---|
491 | _Tp __E1 = __expint_E1(__x);
|
---|
492 | if (__n == 1)
|
---|
493 | return __E1;
|
---|
494 |
|
---|
495 | if (__x == _Tp(0))
|
---|
496 | return _Tp(1) / static_cast<_Tp>(__n - 1);
|
---|
497 |
|
---|
498 | _Tp __En = __expint_En_recursion(__n, __x);
|
---|
499 |
|
---|
500 | return __En;
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 |
|
---|
505 | /**
|
---|
506 | * @brief Return the exponential integral @f$ Ei(x) @f$.
|
---|
507 | *
|
---|
508 | * The exponential integral is given by
|
---|
509 | * \f[
|
---|
510 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
|
---|
511 | * \f]
|
---|
512 | *
|
---|
513 | * @param __x The argument of the exponential integral function.
|
---|
514 | * @return The exponential integral.
|
---|
515 | */
|
---|
516 | template<typename _Tp>
|
---|
517 | inline _Tp
|
---|
518 | __expint(_Tp __x)
|
---|
519 | {
|
---|
520 | if (__isnan(__x))
|
---|
521 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
522 | else
|
---|
523 | return __expint_Ei(__x);
|
---|
524 | }
|
---|
525 | } // namespace __detail
|
---|
526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
527 | } // namespace tr1
|
---|
528 | #endif
|
---|
529 |
|
---|
530 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
531 | }
|
---|
532 |
|
---|
533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
|
---|