1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/gamma.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | // (1) Handbook of Mathematical Functions,
|
---|
36 | // ed. Milton Abramowitz and Irene A. Stegun,
|
---|
37 | // Dover Publications,
|
---|
38 | // Section 6, pp. 253-266
|
---|
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
42 | // 2nd ed, pp. 213-216
|
---|
43 | // (4) Gamma, Exploring Euler's Constant, Julian Havil,
|
---|
44 | // Princeton, 2003.
|
---|
45 |
|
---|
46 | #ifndef _GLIBCXX_TR1_GAMMA_TCC
|
---|
47 | #define _GLIBCXX_TR1_GAMMA_TCC 1
|
---|
48 |
|
---|
49 | #include <tr1/special_function_util.h>
|
---|
50 |
|
---|
51 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
52 | {
|
---|
53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
54 |
|
---|
55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
56 | # define _GLIBCXX_MATH_NS ::std
|
---|
57 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
58 | namespace tr1
|
---|
59 | {
|
---|
60 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
61 | #else
|
---|
62 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
63 | #endif
|
---|
64 | // Implementation-space details.
|
---|
65 | namespace __detail
|
---|
66 | {
|
---|
67 | /**
|
---|
68 | * @brief This returns Bernoulli numbers from a table or by summation
|
---|
69 | * for larger values.
|
---|
70 | *
|
---|
71 | * Recursion is unstable.
|
---|
72 | *
|
---|
73 | * @param __n the order n of the Bernoulli number.
|
---|
74 | * @return The Bernoulli number of order n.
|
---|
75 | */
|
---|
76 | template <typename _Tp>
|
---|
77 | _Tp
|
---|
78 | __bernoulli_series(unsigned int __n)
|
---|
79 | {
|
---|
80 |
|
---|
81 | static const _Tp __num[28] = {
|
---|
82 | _Tp(1UL), -_Tp(1UL) / _Tp(2UL),
|
---|
83 | _Tp(1UL) / _Tp(6UL), _Tp(0UL),
|
---|
84 | -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
|
---|
85 | _Tp(1UL) / _Tp(42UL), _Tp(0UL),
|
---|
86 | -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
|
---|
87 | _Tp(5UL) / _Tp(66UL), _Tp(0UL),
|
---|
88 | -_Tp(691UL) / _Tp(2730UL), _Tp(0UL),
|
---|
89 | _Tp(7UL) / _Tp(6UL), _Tp(0UL),
|
---|
90 | -_Tp(3617UL) / _Tp(510UL), _Tp(0UL),
|
---|
91 | _Tp(43867UL) / _Tp(798UL), _Tp(0UL),
|
---|
92 | -_Tp(174611) / _Tp(330UL), _Tp(0UL),
|
---|
93 | _Tp(854513UL) / _Tp(138UL), _Tp(0UL),
|
---|
94 | -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
|
---|
95 | _Tp(8553103UL) / _Tp(6UL), _Tp(0UL)
|
---|
96 | };
|
---|
97 |
|
---|
98 | if (__n == 0)
|
---|
99 | return _Tp(1);
|
---|
100 |
|
---|
101 | if (__n == 1)
|
---|
102 | return -_Tp(1) / _Tp(2);
|
---|
103 |
|
---|
104 | // Take care of the rest of the odd ones.
|
---|
105 | if (__n % 2 == 1)
|
---|
106 | return _Tp(0);
|
---|
107 |
|
---|
108 | // Take care of some small evens that are painful for the series.
|
---|
109 | if (__n < 28)
|
---|
110 | return __num[__n];
|
---|
111 |
|
---|
112 |
|
---|
113 | _Tp __fact = _Tp(1);
|
---|
114 | if ((__n / 2) % 2 == 0)
|
---|
115 | __fact *= _Tp(-1);
|
---|
116 | for (unsigned int __k = 1; __k <= __n; ++__k)
|
---|
117 | __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
|
---|
118 | __fact *= _Tp(2);
|
---|
119 |
|
---|
120 | _Tp __sum = _Tp(0);
|
---|
121 | for (unsigned int __i = 1; __i < 1000; ++__i)
|
---|
122 | {
|
---|
123 | _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
|
---|
124 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
125 | break;
|
---|
126 | __sum += __term;
|
---|
127 | }
|
---|
128 |
|
---|
129 | return __fact * __sum;
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | /**
|
---|
134 | * @brief This returns Bernoulli number \f$B_n\f$.
|
---|
135 | *
|
---|
136 | * @param __n the order n of the Bernoulli number.
|
---|
137 | * @return The Bernoulli number of order n.
|
---|
138 | */
|
---|
139 | template<typename _Tp>
|
---|
140 | inline _Tp
|
---|
141 | __bernoulli(int __n)
|
---|
142 | { return __bernoulli_series<_Tp>(__n); }
|
---|
143 |
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
|
---|
147 | * with Bernoulli number coefficients. This is like
|
---|
148 | * Sterling's approximation.
|
---|
149 | *
|
---|
150 | * @param __x The argument of the log of the gamma function.
|
---|
151 | * @return The logarithm of the gamma function.
|
---|
152 | */
|
---|
153 | template<typename _Tp>
|
---|
154 | _Tp
|
---|
155 | __log_gamma_bernoulli(_Tp __x)
|
---|
156 | {
|
---|
157 | _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
|
---|
158 | + _Tp(0.5L) * std::log(_Tp(2)
|
---|
159 | * __numeric_constants<_Tp>::__pi());
|
---|
160 |
|
---|
161 | const _Tp __xx = __x * __x;
|
---|
162 | _Tp __help = _Tp(1) / __x;
|
---|
163 | for ( unsigned int __i = 1; __i < 20; ++__i )
|
---|
164 | {
|
---|
165 | const _Tp __2i = _Tp(2 * __i);
|
---|
166 | __help /= __2i * (__2i - _Tp(1)) * __xx;
|
---|
167 | __lg += __bernoulli<_Tp>(2 * __i) * __help;
|
---|
168 | }
|
---|
169 |
|
---|
170 | return __lg;
|
---|
171 | }
|
---|
172 |
|
---|
173 |
|
---|
174 | /**
|
---|
175 | * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
|
---|
176 | * This method dominates all others on the positive axis I think.
|
---|
177 | *
|
---|
178 | * @param __x The argument of the log of the gamma function.
|
---|
179 | * @return The logarithm of the gamma function.
|
---|
180 | */
|
---|
181 | template<typename _Tp>
|
---|
182 | _Tp
|
---|
183 | __log_gamma_lanczos(_Tp __x)
|
---|
184 | {
|
---|
185 | const _Tp __xm1 = __x - _Tp(1);
|
---|
186 |
|
---|
187 | static const _Tp __lanczos_cheb_7[9] = {
|
---|
188 | _Tp( 0.99999999999980993227684700473478L),
|
---|
189 | _Tp( 676.520368121885098567009190444019L),
|
---|
190 | _Tp(-1259.13921672240287047156078755283L),
|
---|
191 | _Tp( 771.3234287776530788486528258894L),
|
---|
192 | _Tp(-176.61502916214059906584551354L),
|
---|
193 | _Tp( 12.507343278686904814458936853L),
|
---|
194 | _Tp(-0.13857109526572011689554707L),
|
---|
195 | _Tp( 9.984369578019570859563e-6L),
|
---|
196 | _Tp( 1.50563273514931155834e-7L)
|
---|
197 | };
|
---|
198 |
|
---|
199 | static const _Tp __LOGROOT2PI
|
---|
200 | = _Tp(0.9189385332046727417803297364056176L);
|
---|
201 |
|
---|
202 | _Tp __sum = __lanczos_cheb_7[0];
|
---|
203 | for(unsigned int __k = 1; __k < 9; ++__k)
|
---|
204 | __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
|
---|
205 |
|
---|
206 | const _Tp __term1 = (__xm1 + _Tp(0.5L))
|
---|
207 | * std::log((__xm1 + _Tp(7.5L))
|
---|
208 | / __numeric_constants<_Tp>::__euler());
|
---|
209 | const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
|
---|
210 | const _Tp __result = __term1 + (__term2 - _Tp(7));
|
---|
211 |
|
---|
212 | return __result;
|
---|
213 | }
|
---|
214 |
|
---|
215 |
|
---|
216 | /**
|
---|
217 | * @brief Return \f$ log(|\Gamma(x)|) \f$.
|
---|
218 | * This will return values even for \f$ x < 0 \f$.
|
---|
219 | * To recover the sign of \f$ \Gamma(x) \f$ for
|
---|
220 | * any argument use @a __log_gamma_sign.
|
---|
221 | *
|
---|
222 | * @param __x The argument of the log of the gamma function.
|
---|
223 | * @return The logarithm of the gamma function.
|
---|
224 | */
|
---|
225 | template<typename _Tp>
|
---|
226 | _Tp
|
---|
227 | __log_gamma(_Tp __x)
|
---|
228 | {
|
---|
229 | if (__x > _Tp(0.5L))
|
---|
230 | return __log_gamma_lanczos(__x);
|
---|
231 | else
|
---|
232 | {
|
---|
233 | const _Tp __sin_fact
|
---|
234 | = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
|
---|
235 | if (__sin_fact == _Tp(0))
|
---|
236 | std::__throw_domain_error(__N("Argument is nonpositive integer "
|
---|
237 | "in __log_gamma"));
|
---|
238 | return __numeric_constants<_Tp>::__lnpi()
|
---|
239 | - std::log(__sin_fact)
|
---|
240 | - __log_gamma_lanczos(_Tp(1) - __x);
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * @brief Return the sign of \f$ \Gamma(x) \f$.
|
---|
247 | * At nonpositive integers zero is returned.
|
---|
248 | *
|
---|
249 | * @param __x The argument of the gamma function.
|
---|
250 | * @return The sign of the gamma function.
|
---|
251 | */
|
---|
252 | template<typename _Tp>
|
---|
253 | _Tp
|
---|
254 | __log_gamma_sign(_Tp __x)
|
---|
255 | {
|
---|
256 | if (__x > _Tp(0))
|
---|
257 | return _Tp(1);
|
---|
258 | else
|
---|
259 | {
|
---|
260 | const _Tp __sin_fact
|
---|
261 | = std::sin(__numeric_constants<_Tp>::__pi() * __x);
|
---|
262 | if (__sin_fact > _Tp(0))
|
---|
263 | return (1);
|
---|
264 | else if (__sin_fact < _Tp(0))
|
---|
265 | return -_Tp(1);
|
---|
266 | else
|
---|
267 | return _Tp(0);
|
---|
268 | }
|
---|
269 | }
|
---|
270 |
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * @brief Return the logarithm of the binomial coefficient.
|
---|
274 | * The binomial coefficient is given by:
|
---|
275 | * @f[
|
---|
276 | * \left( \right) = \frac{n!}{(n-k)! k!}
|
---|
277 | * @f]
|
---|
278 | *
|
---|
279 | * @param __n The first argument of the binomial coefficient.
|
---|
280 | * @param __k The second argument of the binomial coefficient.
|
---|
281 | * @return The binomial coefficient.
|
---|
282 | */
|
---|
283 | template<typename _Tp>
|
---|
284 | _Tp
|
---|
285 | __log_bincoef(unsigned int __n, unsigned int __k)
|
---|
286 | {
|
---|
287 | // Max e exponent before overflow.
|
---|
288 | static const _Tp __max_bincoeff
|
---|
289 | = std::numeric_limits<_Tp>::max_exponent10
|
---|
290 | * std::log(_Tp(10)) - _Tp(1);
|
---|
291 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
292 | _Tp __coeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n))
|
---|
293 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k))
|
---|
294 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k));
|
---|
295 | #else
|
---|
296 | _Tp __coeff = __log_gamma(_Tp(1 + __n))
|
---|
297 | - __log_gamma(_Tp(1 + __k))
|
---|
298 | - __log_gamma(_Tp(1 + __n - __k));
|
---|
299 | #endif
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * @brief Return the binomial coefficient.
|
---|
305 | * The binomial coefficient is given by:
|
---|
306 | * @f[
|
---|
307 | * \left( \right) = \frac{n!}{(n-k)! k!}
|
---|
308 | * @f]
|
---|
309 | *
|
---|
310 | * @param __n The first argument of the binomial coefficient.
|
---|
311 | * @param __k The second argument of the binomial coefficient.
|
---|
312 | * @return The binomial coefficient.
|
---|
313 | */
|
---|
314 | template<typename _Tp>
|
---|
315 | _Tp
|
---|
316 | __bincoef(unsigned int __n, unsigned int __k)
|
---|
317 | {
|
---|
318 | // Max e exponent before overflow.
|
---|
319 | static const _Tp __max_bincoeff
|
---|
320 | = std::numeric_limits<_Tp>::max_exponent10
|
---|
321 | * std::log(_Tp(10)) - _Tp(1);
|
---|
322 |
|
---|
323 | const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
|
---|
324 | if (__log_coeff > __max_bincoeff)
|
---|
325 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
326 | else
|
---|
327 | return std::exp(__log_coeff);
|
---|
328 | }
|
---|
329 |
|
---|
330 |
|
---|
331 | /**
|
---|
332 | * @brief Return \f$ \Gamma(x) \f$.
|
---|
333 | *
|
---|
334 | * @param __x The argument of the gamma function.
|
---|
335 | * @return The gamma function.
|
---|
336 | */
|
---|
337 | template<typename _Tp>
|
---|
338 | inline _Tp
|
---|
339 | __gamma(_Tp __x)
|
---|
340 | { return std::exp(__log_gamma(__x)); }
|
---|
341 |
|
---|
342 |
|
---|
343 | /**
|
---|
344 | * @brief Return the digamma function by series expansion.
|
---|
345 | * The digamma or @f$ \psi(x) @f$ function is defined by
|
---|
346 | * @f[
|
---|
347 | * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
|
---|
348 | * @f]
|
---|
349 | *
|
---|
350 | * The series is given by:
|
---|
351 | * @f[
|
---|
352 | * \psi(x) = -\gamma_E - \frac{1}{x}
|
---|
353 | * \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
|
---|
354 | * @f]
|
---|
355 | */
|
---|
356 | template<typename _Tp>
|
---|
357 | _Tp
|
---|
358 | __psi_series(_Tp __x)
|
---|
359 | {
|
---|
360 | _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
|
---|
361 | const unsigned int __max_iter = 100000;
|
---|
362 | for (unsigned int __k = 1; __k < __max_iter; ++__k)
|
---|
363 | {
|
---|
364 | const _Tp __term = __x / (__k * (__k + __x));
|
---|
365 | __sum += __term;
|
---|
366 | if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
|
---|
367 | break;
|
---|
368 | }
|
---|
369 | return __sum;
|
---|
370 | }
|
---|
371 |
|
---|
372 |
|
---|
373 | /**
|
---|
374 | * @brief Return the digamma function for large argument.
|
---|
375 | * The digamma or @f$ \psi(x) @f$ function is defined by
|
---|
376 | * @f[
|
---|
377 | * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
|
---|
378 | * @f]
|
---|
379 | *
|
---|
380 | * The asymptotic series is given by:
|
---|
381 | * @f[
|
---|
382 | * \psi(x) = \ln(x) - \frac{1}{2x}
|
---|
383 | * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
|
---|
384 | * @f]
|
---|
385 | */
|
---|
386 | template<typename _Tp>
|
---|
387 | _Tp
|
---|
388 | __psi_asymp(_Tp __x)
|
---|
389 | {
|
---|
390 | _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
|
---|
391 | const _Tp __xx = __x * __x;
|
---|
392 | _Tp __xp = __xx;
|
---|
393 | const unsigned int __max_iter = 100;
|
---|
394 | for (unsigned int __k = 1; __k < __max_iter; ++__k)
|
---|
395 | {
|
---|
396 | const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
|
---|
397 | __sum -= __term;
|
---|
398 | if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
|
---|
399 | break;
|
---|
400 | __xp *= __xx;
|
---|
401 | }
|
---|
402 | return __sum;
|
---|
403 | }
|
---|
404 |
|
---|
405 |
|
---|
406 | /**
|
---|
407 | * @brief Return the digamma function.
|
---|
408 | * The digamma or @f$ \psi(x) @f$ function is defined by
|
---|
409 | * @f[
|
---|
410 | * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
|
---|
411 | * @f]
|
---|
412 | * For negative argument the reflection formula is used:
|
---|
413 | * @f[
|
---|
414 | * \psi(x) = \psi(1-x) - \pi \cot(\pi x)
|
---|
415 | * @f]
|
---|
416 | */
|
---|
417 | template<typename _Tp>
|
---|
418 | _Tp
|
---|
419 | __psi(_Tp __x)
|
---|
420 | {
|
---|
421 | const int __n = static_cast<int>(__x + 0.5L);
|
---|
422 | const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
|
---|
423 | if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
|
---|
424 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
425 | else if (__x < _Tp(0))
|
---|
426 | {
|
---|
427 | const _Tp __pi = __numeric_constants<_Tp>::__pi();
|
---|
428 | return __psi(_Tp(1) - __x)
|
---|
429 | - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
|
---|
430 | }
|
---|
431 | else if (__x > _Tp(100))
|
---|
432 | return __psi_asymp(__x);
|
---|
433 | else
|
---|
434 | return __psi_series(__x);
|
---|
435 | }
|
---|
436 |
|
---|
437 |
|
---|
438 | /**
|
---|
439 | * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$.
|
---|
440 | *
|
---|
441 | * The polygamma function is related to the Hurwitz zeta function:
|
---|
442 | * @f[
|
---|
443 | * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
|
---|
444 | * @f]
|
---|
445 | */
|
---|
446 | template<typename _Tp>
|
---|
447 | _Tp
|
---|
448 | __psi(unsigned int __n, _Tp __x)
|
---|
449 | {
|
---|
450 | if (__x <= _Tp(0))
|
---|
451 | std::__throw_domain_error(__N("Argument out of range "
|
---|
452 | "in __psi"));
|
---|
453 | else if (__n == 0)
|
---|
454 | return __psi(__x);
|
---|
455 | else
|
---|
456 | {
|
---|
457 | const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
|
---|
458 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
459 | const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
|
---|
460 | #else
|
---|
461 | const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
|
---|
462 | #endif
|
---|
463 | _Tp __result = std::exp(__ln_nfact) * __hzeta;
|
---|
464 | if (__n % 2 == 1)
|
---|
465 | __result = -__result;
|
---|
466 | return __result;
|
---|
467 | }
|
---|
468 | }
|
---|
469 | } // namespace __detail
|
---|
470 | #undef _GLIBCXX_MATH_NS
|
---|
471 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
472 | } // namespace tr1
|
---|
473 | #endif
|
---|
474 |
|
---|
475 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
476 | } // namespace std
|
---|
477 |
|
---|
478 | #endif // _GLIBCXX_TR1_GAMMA_TCC
|
---|
479 |
|
---|