[1166] | 1 | // Special functions -*- C++ -*-
|
---|
| 2 |
|
---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
| 4 | //
|
---|
| 5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
| 6 | // software; you can redistribute it and/or modify it under the
|
---|
| 7 | // terms of the GNU General Public License as published by the
|
---|
| 8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
| 9 | // any later version.
|
---|
| 10 | //
|
---|
| 11 | // This library is distributed in the hope that it will be useful,
|
---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | // GNU General Public License for more details.
|
---|
| 15 | //
|
---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
| 17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
| 18 | // 3.1, as published by the Free Software Foundation.
|
---|
| 19 |
|
---|
| 20 | // You should have received a copy of the GNU General Public License and
|
---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
| 23 | // <http://www.gnu.org/licenses/>.
|
---|
| 24 |
|
---|
| 25 | /** @file tr1/hypergeometric.tcc
|
---|
| 26 | * This is an internal header file, included by other library headers.
|
---|
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | //
|
---|
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
| 32 | //
|
---|
| 33 |
|
---|
| 34 | // Written by Edward Smith-Rowland based:
|
---|
| 35 | // (1) Handbook of Mathematical Functions,
|
---|
| 36 | // ed. Milton Abramowitz and Irene A. Stegun,
|
---|
| 37 | // Dover Publications,
|
---|
| 38 | // Section 6, pp. 555-566
|
---|
| 39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
| 40 |
|
---|
| 41 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|
---|
| 42 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
|
---|
| 43 |
|
---|
| 44 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
| 45 | {
|
---|
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
| 47 |
|
---|
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
| 49 | # define _GLIBCXX_MATH_NS ::std
|
---|
| 50 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
| 51 | namespace tr1
|
---|
| 52 | {
|
---|
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
| 54 | #else
|
---|
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
| 56 | #endif
|
---|
| 57 | // [5.2] Special functions
|
---|
| 58 |
|
---|
| 59 | // Implementation-space details.
|
---|
| 60 | namespace __detail
|
---|
| 61 | {
|
---|
| 62 | /**
|
---|
| 63 | * @brief This routine returns the confluent hypergeometric function
|
---|
| 64 | * by series expansion.
|
---|
| 65 | *
|
---|
| 66 | * @f[
|
---|
| 67 | * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
|
---|
| 68 | * \sum_{n=0}^{\infty}
|
---|
| 69 | * \frac{\Gamma(a+n)}{\Gamma(c+n)}
|
---|
| 70 | * \frac{x^n}{n!}
|
---|
| 71 | * @f]
|
---|
| 72 | *
|
---|
| 73 | * If a and b are integers and a < 0 and either b > 0 or b < a
|
---|
| 74 | * then the series is a polynomial with a finite number of
|
---|
| 75 | * terms. If b is an integer and b <= 0 the confluent
|
---|
| 76 | * hypergeometric function is undefined.
|
---|
| 77 | *
|
---|
| 78 | * @param __a The "numerator" parameter.
|
---|
| 79 | * @param __c The "denominator" parameter.
|
---|
| 80 | * @param __x The argument of the confluent hypergeometric function.
|
---|
| 81 | * @return The confluent hypergeometric function.
|
---|
| 82 | */
|
---|
| 83 | template<typename _Tp>
|
---|
| 84 | _Tp
|
---|
| 85 | __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
|
---|
| 86 | {
|
---|
| 87 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 88 |
|
---|
| 89 | _Tp __term = _Tp(1);
|
---|
| 90 | _Tp __Fac = _Tp(1);
|
---|
| 91 | const unsigned int __max_iter = 100000;
|
---|
| 92 | unsigned int __i;
|
---|
| 93 | for (__i = 0; __i < __max_iter; ++__i)
|
---|
| 94 | {
|
---|
| 95 | __term *= (__a + _Tp(__i)) * __x
|
---|
| 96 | / ((__c + _Tp(__i)) * _Tp(1 + __i));
|
---|
| 97 | if (std::abs(__term) < __eps)
|
---|
| 98 | {
|
---|
| 99 | break;
|
---|
| 100 | }
|
---|
| 101 | __Fac += __term;
|
---|
| 102 | }
|
---|
| 103 | if (__i == __max_iter)
|
---|
| 104 | std::__throw_runtime_error(__N("Series failed to converge "
|
---|
| 105 | "in __conf_hyperg_series."));
|
---|
| 106 |
|
---|
| 107 | return __Fac;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 |
|
---|
| 111 | /**
|
---|
| 112 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
---|
| 113 | * by an iterative procedure described in
|
---|
| 114 | * Luke, Algorithms for the Computation of Mathematical Functions.
|
---|
| 115 | *
|
---|
| 116 | * Like the case of the 2F1 rational approximations, these are
|
---|
| 117 | * probably guaranteed to converge for x < 0, barring gross
|
---|
| 118 | * numerical instability in the pre-asymptotic regime.
|
---|
| 119 | */
|
---|
| 120 | template<typename _Tp>
|
---|
| 121 | _Tp
|
---|
| 122 | __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
|
---|
| 123 | {
|
---|
| 124 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
|
---|
| 125 | const int __nmax = 20000;
|
---|
| 126 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 127 | const _Tp __x = -__xin;
|
---|
| 128 | const _Tp __x3 = __x * __x * __x;
|
---|
| 129 | const _Tp __t0 = __a / __c;
|
---|
| 130 | const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
|
---|
| 131 | const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
|
---|
| 132 | _Tp __F = _Tp(1);
|
---|
| 133 | _Tp __prec;
|
---|
| 134 |
|
---|
| 135 | _Tp __Bnm3 = _Tp(1);
|
---|
| 136 | _Tp __Bnm2 = _Tp(1) + __t1 * __x;
|
---|
| 137 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
|
---|
| 138 |
|
---|
| 139 | _Tp __Anm3 = _Tp(1);
|
---|
| 140 | _Tp __Anm2 = __Bnm2 - __t0 * __x;
|
---|
| 141 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
|
---|
| 142 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
|
---|
| 143 |
|
---|
| 144 | int __n = 3;
|
---|
| 145 | while(1)
|
---|
| 146 | {
|
---|
| 147 | _Tp __npam1 = _Tp(__n - 1) + __a;
|
---|
| 148 | _Tp __npcm1 = _Tp(__n - 1) + __c;
|
---|
| 149 | _Tp __npam2 = _Tp(__n - 2) + __a;
|
---|
| 150 | _Tp __npcm2 = _Tp(__n - 2) + __c;
|
---|
| 151 | _Tp __tnm1 = _Tp(2 * __n - 1);
|
---|
| 152 | _Tp __tnm3 = _Tp(2 * __n - 3);
|
---|
| 153 | _Tp __tnm5 = _Tp(2 * __n - 5);
|
---|
| 154 | _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
|
---|
| 155 | _Tp __F2 = (_Tp(__n) + __a) * __npam1
|
---|
| 156 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
|
---|
| 157 | _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
|
---|
| 158 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
|
---|
| 159 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
|
---|
| 160 | _Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
|
---|
| 161 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
|
---|
| 162 |
|
---|
| 163 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
|
---|
| 164 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
|
---|
| 165 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
|
---|
| 166 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
|
---|
| 167 | _Tp __r = __An / __Bn;
|
---|
| 168 |
|
---|
| 169 | __prec = std::abs((__F - __r) / __F);
|
---|
| 170 | __F = __r;
|
---|
| 171 |
|
---|
| 172 | if (__prec < __eps || __n > __nmax)
|
---|
| 173 | break;
|
---|
| 174 |
|
---|
| 175 | if (std::abs(__An) > __big || std::abs(__Bn) > __big)
|
---|
| 176 | {
|
---|
| 177 | __An /= __big;
|
---|
| 178 | __Bn /= __big;
|
---|
| 179 | __Anm1 /= __big;
|
---|
| 180 | __Bnm1 /= __big;
|
---|
| 181 | __Anm2 /= __big;
|
---|
| 182 | __Bnm2 /= __big;
|
---|
| 183 | __Anm3 /= __big;
|
---|
| 184 | __Bnm3 /= __big;
|
---|
| 185 | }
|
---|
| 186 | else if (std::abs(__An) < _Tp(1) / __big
|
---|
| 187 | || std::abs(__Bn) < _Tp(1) / __big)
|
---|
| 188 | {
|
---|
| 189 | __An *= __big;
|
---|
| 190 | __Bn *= __big;
|
---|
| 191 | __Anm1 *= __big;
|
---|
| 192 | __Bnm1 *= __big;
|
---|
| 193 | __Anm2 *= __big;
|
---|
| 194 | __Bnm2 *= __big;
|
---|
| 195 | __Anm3 *= __big;
|
---|
| 196 | __Bnm3 *= __big;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | ++__n;
|
---|
| 200 | __Bnm3 = __Bnm2;
|
---|
| 201 | __Bnm2 = __Bnm1;
|
---|
| 202 | __Bnm1 = __Bn;
|
---|
| 203 | __Anm3 = __Anm2;
|
---|
| 204 | __Anm2 = __Anm1;
|
---|
| 205 | __Anm1 = __An;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | if (__n >= __nmax)
|
---|
| 209 | std::__throw_runtime_error(__N("Iteration failed to converge "
|
---|
| 210 | "in __conf_hyperg_luke."));
|
---|
| 211 |
|
---|
| 212 | return __F;
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 |
|
---|
| 216 | /**
|
---|
| 217 | * @brief Return the confluent hypogeometric function
|
---|
| 218 | * @f$ _1F_1(a;c;x) @f$.
|
---|
| 219 | *
|
---|
| 220 | * @todo Handle b == nonpositive integer blowup - return NaN.
|
---|
| 221 | *
|
---|
| 222 | * @param __a The @a numerator parameter.
|
---|
| 223 | * @param __c The @a denominator parameter.
|
---|
| 224 | * @param __x The argument of the confluent hypergeometric function.
|
---|
| 225 | * @return The confluent hypergeometric function.
|
---|
| 226 | */
|
---|
| 227 | template<typename _Tp>
|
---|
| 228 | _Tp
|
---|
| 229 | __conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
|
---|
| 230 | {
|
---|
| 231 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 232 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
|
---|
| 233 | #else
|
---|
| 234 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
|
---|
| 235 | #endif
|
---|
| 236 | if (__isnan(__a) || __isnan(__c) || __isnan(__x))
|
---|
| 237 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 238 | else if (__c_nint == __c && __c_nint <= 0)
|
---|
| 239 | return std::numeric_limits<_Tp>::infinity();
|
---|
| 240 | else if (__a == _Tp(0))
|
---|
| 241 | return _Tp(1);
|
---|
| 242 | else if (__c == __a)
|
---|
| 243 | return std::exp(__x);
|
---|
| 244 | else if (__x < _Tp(0))
|
---|
| 245 | return __conf_hyperg_luke(__a, __c, __x);
|
---|
| 246 | else
|
---|
| 247 | return __conf_hyperg_series(__a, __c, __x);
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 |
|
---|
| 251 | /**
|
---|
| 252 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
---|
| 253 | * by series expansion.
|
---|
| 254 | *
|
---|
| 255 | * The hypogeometric function is defined by
|
---|
| 256 | * @f[
|
---|
| 257 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
---|
| 258 | * \sum_{n=0}^{\infty}
|
---|
| 259 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
---|
| 260 | * \frac{x^n}{n!}
|
---|
| 261 | * @f]
|
---|
| 262 | *
|
---|
| 263 | * This works and it's pretty fast.
|
---|
| 264 | *
|
---|
| 265 | * @param __a The first @a numerator parameter.
|
---|
| 266 | * @param __a The second @a numerator parameter.
|
---|
| 267 | * @param __c The @a denominator parameter.
|
---|
| 268 | * @param __x The argument of the confluent hypergeometric function.
|
---|
| 269 | * @return The confluent hypergeometric function.
|
---|
| 270 | */
|
---|
| 271 | template<typename _Tp>
|
---|
| 272 | _Tp
|
---|
| 273 | __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
|
---|
| 274 | {
|
---|
| 275 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 276 |
|
---|
| 277 | _Tp __term = _Tp(1);
|
---|
| 278 | _Tp __Fabc = _Tp(1);
|
---|
| 279 | const unsigned int __max_iter = 100000;
|
---|
| 280 | unsigned int __i;
|
---|
| 281 | for (__i = 0; __i < __max_iter; ++__i)
|
---|
| 282 | {
|
---|
| 283 | __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
|
---|
| 284 | / ((__c + _Tp(__i)) * _Tp(1 + __i));
|
---|
| 285 | if (std::abs(__term) < __eps)
|
---|
| 286 | {
|
---|
| 287 | break;
|
---|
| 288 | }
|
---|
| 289 | __Fabc += __term;
|
---|
| 290 | }
|
---|
| 291 | if (__i == __max_iter)
|
---|
| 292 | std::__throw_runtime_error(__N("Series failed to converge "
|
---|
| 293 | "in __hyperg_series."));
|
---|
| 294 |
|
---|
| 295 | return __Fabc;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 |
|
---|
| 299 | /**
|
---|
| 300 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
---|
| 301 | * by an iterative procedure described in
|
---|
| 302 | * Luke, Algorithms for the Computation of Mathematical Functions.
|
---|
| 303 | */
|
---|
| 304 | template<typename _Tp>
|
---|
| 305 | _Tp
|
---|
| 306 | __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
|
---|
| 307 | {
|
---|
| 308 | const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
|
---|
| 309 | const int __nmax = 20000;
|
---|
| 310 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 311 | const _Tp __x = -__xin;
|
---|
| 312 | const _Tp __x3 = __x * __x * __x;
|
---|
| 313 | const _Tp __t0 = __a * __b / __c;
|
---|
| 314 | const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
|
---|
| 315 | const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
|
---|
| 316 | / (_Tp(2) * (__c + _Tp(1)));
|
---|
| 317 |
|
---|
| 318 | _Tp __F = _Tp(1);
|
---|
| 319 |
|
---|
| 320 | _Tp __Bnm3 = _Tp(1);
|
---|
| 321 | _Tp __Bnm2 = _Tp(1) + __t1 * __x;
|
---|
| 322 | _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
|
---|
| 323 |
|
---|
| 324 | _Tp __Anm3 = _Tp(1);
|
---|
| 325 | _Tp __Anm2 = __Bnm2 - __t0 * __x;
|
---|
| 326 | _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
|
---|
| 327 | + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
|
---|
| 328 |
|
---|
| 329 | int __n = 3;
|
---|
| 330 | while (1)
|
---|
| 331 | {
|
---|
| 332 | const _Tp __npam1 = _Tp(__n - 1) + __a;
|
---|
| 333 | const _Tp __npbm1 = _Tp(__n - 1) + __b;
|
---|
| 334 | const _Tp __npcm1 = _Tp(__n - 1) + __c;
|
---|
| 335 | const _Tp __npam2 = _Tp(__n - 2) + __a;
|
---|
| 336 | const _Tp __npbm2 = _Tp(__n - 2) + __b;
|
---|
| 337 | const _Tp __npcm2 = _Tp(__n - 2) + __c;
|
---|
| 338 | const _Tp __tnm1 = _Tp(2 * __n - 1);
|
---|
| 339 | const _Tp __tnm3 = _Tp(2 * __n - 3);
|
---|
| 340 | const _Tp __tnm5 = _Tp(2 * __n - 5);
|
---|
| 341 | const _Tp __n2 = __n * __n;
|
---|
| 342 | const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
|
---|
| 343 | + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
|
---|
| 344 | / (_Tp(2) * __tnm3 * __npcm1);
|
---|
| 345 | const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
|
---|
| 346 | + _Tp(2) - __a * __b) * __npam1 * __npbm1
|
---|
| 347 | / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
|
---|
| 348 | const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
|
---|
| 349 | * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
|
---|
| 350 | / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
|
---|
| 351 | * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
|
---|
| 352 | const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
|
---|
| 353 | / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
|
---|
| 354 |
|
---|
| 355 | _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
|
---|
| 356 | + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
|
---|
| 357 | _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
|
---|
| 358 | + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
|
---|
| 359 | const _Tp __r = __An / __Bn;
|
---|
| 360 |
|
---|
| 361 | const _Tp __prec = std::abs((__F - __r) / __F);
|
---|
| 362 | __F = __r;
|
---|
| 363 |
|
---|
| 364 | if (__prec < __eps || __n > __nmax)
|
---|
| 365 | break;
|
---|
| 366 |
|
---|
| 367 | if (std::abs(__An) > __big || std::abs(__Bn) > __big)
|
---|
| 368 | {
|
---|
| 369 | __An /= __big;
|
---|
| 370 | __Bn /= __big;
|
---|
| 371 | __Anm1 /= __big;
|
---|
| 372 | __Bnm1 /= __big;
|
---|
| 373 | __Anm2 /= __big;
|
---|
| 374 | __Bnm2 /= __big;
|
---|
| 375 | __Anm3 /= __big;
|
---|
| 376 | __Bnm3 /= __big;
|
---|
| 377 | }
|
---|
| 378 | else if (std::abs(__An) < _Tp(1) / __big
|
---|
| 379 | || std::abs(__Bn) < _Tp(1) / __big)
|
---|
| 380 | {
|
---|
| 381 | __An *= __big;
|
---|
| 382 | __Bn *= __big;
|
---|
| 383 | __Anm1 *= __big;
|
---|
| 384 | __Bnm1 *= __big;
|
---|
| 385 | __Anm2 *= __big;
|
---|
| 386 | __Bnm2 *= __big;
|
---|
| 387 | __Anm3 *= __big;
|
---|
| 388 | __Bnm3 *= __big;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | ++__n;
|
---|
| 392 | __Bnm3 = __Bnm2;
|
---|
| 393 | __Bnm2 = __Bnm1;
|
---|
| 394 | __Bnm1 = __Bn;
|
---|
| 395 | __Anm3 = __Anm2;
|
---|
| 396 | __Anm2 = __Anm1;
|
---|
| 397 | __Anm1 = __An;
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | if (__n >= __nmax)
|
---|
| 401 | std::__throw_runtime_error(__N("Iteration failed to converge "
|
---|
| 402 | "in __hyperg_luke."));
|
---|
| 403 |
|
---|
| 404 | return __F;
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 |
|
---|
| 408 | /**
|
---|
| 409 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
|
---|
| 410 | * by the reflection formulae in Abramowitz & Stegun formula
|
---|
| 411 | * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
|
---|
| 412 | * d = c - a - b integral. This assumes a, b, c != negative
|
---|
| 413 | * integer.
|
---|
| 414 | *
|
---|
| 415 | * The hypogeometric function is defined by
|
---|
| 416 | * @f[
|
---|
| 417 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
---|
| 418 | * \sum_{n=0}^{\infty}
|
---|
| 419 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
---|
| 420 | * \frac{x^n}{n!}
|
---|
| 421 | * @f]
|
---|
| 422 | *
|
---|
| 423 | * The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
|
---|
| 424 | * @f[
|
---|
| 425 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
|
---|
| 426 | * _2F_1(a,b;1-d;1-x)
|
---|
| 427 | * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
|
---|
| 428 | * _2F_1(c-a,c-b;1+d;1-x)
|
---|
| 429 | * @f]
|
---|
| 430 | *
|
---|
| 431 | * The reflection formula for integral @f$ m = c - a - b @f$ is:
|
---|
| 432 | * @f[
|
---|
| 433 | * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
|
---|
| 434 | * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
|
---|
| 435 | * -
|
---|
| 436 | * @f]
|
---|
| 437 | */
|
---|
| 438 | template<typename _Tp>
|
---|
| 439 | _Tp
|
---|
| 440 | __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
|
---|
| 441 | {
|
---|
| 442 | const _Tp __d = __c - __a - __b;
|
---|
| 443 | const int __intd = std::floor(__d + _Tp(0.5L));
|
---|
| 444 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 445 | const _Tp __toler = _Tp(1000) * __eps;
|
---|
| 446 | const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
|
---|
| 447 | const bool __d_integer = (std::abs(__d - __intd) < __toler);
|
---|
| 448 |
|
---|
| 449 | if (__d_integer)
|
---|
| 450 | {
|
---|
| 451 | const _Tp __ln_omx = std::log(_Tp(1) - __x);
|
---|
| 452 | const _Tp __ad = std::abs(__d);
|
---|
| 453 | _Tp __F1, __F2;
|
---|
| 454 |
|
---|
| 455 | _Tp __d1, __d2;
|
---|
| 456 | if (__d >= _Tp(0))
|
---|
| 457 | {
|
---|
| 458 | __d1 = __d;
|
---|
| 459 | __d2 = _Tp(0);
|
---|
| 460 | }
|
---|
| 461 | else
|
---|
| 462 | {
|
---|
| 463 | __d1 = _Tp(0);
|
---|
| 464 | __d2 = __d;
|
---|
| 465 | }
|
---|
| 466 |
|
---|
| 467 | const _Tp __lng_c = __log_gamma(__c);
|
---|
| 468 |
|
---|
| 469 | // Evaluate F1.
|
---|
| 470 | if (__ad < __eps)
|
---|
| 471 | {
|
---|
| 472 | // d = c - a - b = 0.
|
---|
| 473 | __F1 = _Tp(0);
|
---|
| 474 | }
|
---|
| 475 | else
|
---|
| 476 | {
|
---|
| 477 |
|
---|
| 478 | bool __ok_d1 = true;
|
---|
| 479 | _Tp __lng_ad, __lng_ad1, __lng_bd1;
|
---|
| 480 | __try
|
---|
| 481 | {
|
---|
| 482 | __lng_ad = __log_gamma(__ad);
|
---|
| 483 | __lng_ad1 = __log_gamma(__a + __d1);
|
---|
| 484 | __lng_bd1 = __log_gamma(__b + __d1);
|
---|
| 485 | }
|
---|
| 486 | __catch(...)
|
---|
| 487 | {
|
---|
| 488 | __ok_d1 = false;
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | if (__ok_d1)
|
---|
| 492 | {
|
---|
| 493 | /* Gamma functions in the denominator are ok.
|
---|
| 494 | * Proceed with evaluation.
|
---|
| 495 | */
|
---|
| 496 | _Tp __sum1 = _Tp(1);
|
---|
| 497 | _Tp __term = _Tp(1);
|
---|
| 498 | _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
|
---|
| 499 | - __lng_ad1 - __lng_bd1;
|
---|
| 500 |
|
---|
| 501 | /* Do F1 sum.
|
---|
| 502 | */
|
---|
| 503 | for (int __i = 1; __i < __ad; ++__i)
|
---|
| 504 | {
|
---|
| 505 | const int __j = __i - 1;
|
---|
| 506 | __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
|
---|
| 507 | / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
|
---|
| 508 | __sum1 += __term;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | if (__ln_pre1 > __log_max)
|
---|
| 512 | std::__throw_runtime_error(__N("Overflow of gamma functions"
|
---|
| 513 | " in __hyperg_luke."));
|
---|
| 514 | else
|
---|
| 515 | __F1 = std::exp(__ln_pre1) * __sum1;
|
---|
| 516 | }
|
---|
| 517 | else
|
---|
| 518 | {
|
---|
| 519 | // Gamma functions in the denominator were not ok.
|
---|
| 520 | // So the F1 term is zero.
|
---|
| 521 | __F1 = _Tp(0);
|
---|
| 522 | }
|
---|
| 523 | } // end F1 evaluation
|
---|
| 524 |
|
---|
| 525 | // Evaluate F2.
|
---|
| 526 | bool __ok_d2 = true;
|
---|
| 527 | _Tp __lng_ad2, __lng_bd2;
|
---|
| 528 | __try
|
---|
| 529 | {
|
---|
| 530 | __lng_ad2 = __log_gamma(__a + __d2);
|
---|
| 531 | __lng_bd2 = __log_gamma(__b + __d2);
|
---|
| 532 | }
|
---|
| 533 | __catch(...)
|
---|
| 534 | {
|
---|
| 535 | __ok_d2 = false;
|
---|
| 536 | }
|
---|
| 537 |
|
---|
| 538 | if (__ok_d2)
|
---|
| 539 | {
|
---|
| 540 | // Gamma functions in the denominator are ok.
|
---|
| 541 | // Proceed with evaluation.
|
---|
| 542 | const int __maxiter = 2000;
|
---|
| 543 | const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
|
---|
| 544 | const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
|
---|
| 545 | const _Tp __psi_apd1 = __psi(__a + __d1);
|
---|
| 546 | const _Tp __psi_bpd1 = __psi(__b + __d1);
|
---|
| 547 |
|
---|
| 548 | _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
|
---|
| 549 | - __psi_bpd1 - __ln_omx;
|
---|
| 550 | _Tp __fact = _Tp(1);
|
---|
| 551 | _Tp __sum2 = __psi_term;
|
---|
| 552 | _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
|
---|
| 553 | - __lng_ad2 - __lng_bd2;
|
---|
| 554 |
|
---|
| 555 | // Do F2 sum.
|
---|
| 556 | int __j;
|
---|
| 557 | for (__j = 1; __j < __maxiter; ++__j)
|
---|
| 558 | {
|
---|
| 559 | // Values for psi functions use recurrence;
|
---|
| 560 | // Abramowitz & Stegun 6.3.5
|
---|
| 561 | const _Tp __term1 = _Tp(1) / _Tp(__j)
|
---|
| 562 | + _Tp(1) / (__ad + __j);
|
---|
| 563 | const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
|
---|
| 564 | + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
|
---|
| 565 | __psi_term += __term1 - __term2;
|
---|
| 566 | __fact *= (__a + __d1 + _Tp(__j - 1))
|
---|
| 567 | * (__b + __d1 + _Tp(__j - 1))
|
---|
| 568 | / ((__ad + __j) * __j) * (_Tp(1) - __x);
|
---|
| 569 | const _Tp __delta = __fact * __psi_term;
|
---|
| 570 | __sum2 += __delta;
|
---|
| 571 | if (std::abs(__delta) < __eps * std::abs(__sum2))
|
---|
| 572 | break;
|
---|
| 573 | }
|
---|
| 574 | if (__j == __maxiter)
|
---|
| 575 | std::__throw_runtime_error(__N("Sum F2 failed to converge "
|
---|
| 576 | "in __hyperg_reflect"));
|
---|
| 577 |
|
---|
| 578 | if (__sum2 == _Tp(0))
|
---|
| 579 | __F2 = _Tp(0);
|
---|
| 580 | else
|
---|
| 581 | __F2 = std::exp(__ln_pre2) * __sum2;
|
---|
| 582 | }
|
---|
| 583 | else
|
---|
| 584 | {
|
---|
| 585 | // Gamma functions in the denominator not ok.
|
---|
| 586 | // So the F2 term is zero.
|
---|
| 587 | __F2 = _Tp(0);
|
---|
| 588 | } // end F2 evaluation
|
---|
| 589 |
|
---|
| 590 | const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
|
---|
| 591 | const _Tp __F = __F1 + __sgn_2 * __F2;
|
---|
| 592 |
|
---|
| 593 | return __F;
|
---|
| 594 | }
|
---|
| 595 | else
|
---|
| 596 | {
|
---|
| 597 | // d = c - a - b not an integer.
|
---|
| 598 |
|
---|
| 599 | // These gamma functions appear in the denominator, so we
|
---|
| 600 | // catch their harmless domain errors and set the terms to zero.
|
---|
| 601 | bool __ok1 = true;
|
---|
| 602 | _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
|
---|
| 603 | _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
|
---|
| 604 | __try
|
---|
| 605 | {
|
---|
| 606 | __sgn_g1ca = __log_gamma_sign(__c - __a);
|
---|
| 607 | __ln_g1ca = __log_gamma(__c - __a);
|
---|
| 608 | __sgn_g1cb = __log_gamma_sign(__c - __b);
|
---|
| 609 | __ln_g1cb = __log_gamma(__c - __b);
|
---|
| 610 | }
|
---|
| 611 | __catch(...)
|
---|
| 612 | {
|
---|
| 613 | __ok1 = false;
|
---|
| 614 | }
|
---|
| 615 |
|
---|
| 616 | bool __ok2 = true;
|
---|
| 617 | _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
|
---|
| 618 | _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
|
---|
| 619 | __try
|
---|
| 620 | {
|
---|
| 621 | __sgn_g2a = __log_gamma_sign(__a);
|
---|
| 622 | __ln_g2a = __log_gamma(__a);
|
---|
| 623 | __sgn_g2b = __log_gamma_sign(__b);
|
---|
| 624 | __ln_g2b = __log_gamma(__b);
|
---|
| 625 | }
|
---|
| 626 | __catch(...)
|
---|
| 627 | {
|
---|
| 628 | __ok2 = false;
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 | const _Tp __sgn_gc = __log_gamma_sign(__c);
|
---|
| 632 | const _Tp __ln_gc = __log_gamma(__c);
|
---|
| 633 | const _Tp __sgn_gd = __log_gamma_sign(__d);
|
---|
| 634 | const _Tp __ln_gd = __log_gamma(__d);
|
---|
| 635 | const _Tp __sgn_gmd = __log_gamma_sign(-__d);
|
---|
| 636 | const _Tp __ln_gmd = __log_gamma(-__d);
|
---|
| 637 |
|
---|
| 638 | const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
|
---|
| 639 | const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
|
---|
| 640 |
|
---|
| 641 | _Tp __pre1, __pre2;
|
---|
| 642 | if (__ok1 && __ok2)
|
---|
| 643 | {
|
---|
| 644 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
|
---|
| 645 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
|
---|
| 646 | + __d * std::log(_Tp(1) - __x);
|
---|
| 647 | if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
|
---|
| 648 | {
|
---|
| 649 | __pre1 = std::exp(__ln_pre1);
|
---|
| 650 | __pre2 = std::exp(__ln_pre2);
|
---|
| 651 | __pre1 *= __sgn1;
|
---|
| 652 | __pre2 *= __sgn2;
|
---|
| 653 | }
|
---|
| 654 | else
|
---|
| 655 | {
|
---|
| 656 | std::__throw_runtime_error(__N("Overflow of gamma functions "
|
---|
| 657 | "in __hyperg_reflect"));
|
---|
| 658 | }
|
---|
| 659 | }
|
---|
| 660 | else if (__ok1 && !__ok2)
|
---|
| 661 | {
|
---|
| 662 | _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
|
---|
| 663 | if (__ln_pre1 < __log_max)
|
---|
| 664 | {
|
---|
| 665 | __pre1 = std::exp(__ln_pre1);
|
---|
| 666 | __pre1 *= __sgn1;
|
---|
| 667 | __pre2 = _Tp(0);
|
---|
| 668 | }
|
---|
| 669 | else
|
---|
| 670 | {
|
---|
| 671 | std::__throw_runtime_error(__N("Overflow of gamma functions "
|
---|
| 672 | "in __hyperg_reflect"));
|
---|
| 673 | }
|
---|
| 674 | }
|
---|
| 675 | else if (!__ok1 && __ok2)
|
---|
| 676 | {
|
---|
| 677 | _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
|
---|
| 678 | + __d * std::log(_Tp(1) - __x);
|
---|
| 679 | if (__ln_pre2 < __log_max)
|
---|
| 680 | {
|
---|
| 681 | __pre1 = _Tp(0);
|
---|
| 682 | __pre2 = std::exp(__ln_pre2);
|
---|
| 683 | __pre2 *= __sgn2;
|
---|
| 684 | }
|
---|
| 685 | else
|
---|
| 686 | {
|
---|
| 687 | std::__throw_runtime_error(__N("Overflow of gamma functions "
|
---|
| 688 | "in __hyperg_reflect"));
|
---|
| 689 | }
|
---|
| 690 | }
|
---|
| 691 | else
|
---|
| 692 | {
|
---|
| 693 | __pre1 = _Tp(0);
|
---|
| 694 | __pre2 = _Tp(0);
|
---|
| 695 | std::__throw_runtime_error(__N("Underflow of gamma functions "
|
---|
| 696 | "in __hyperg_reflect"));
|
---|
| 697 | }
|
---|
| 698 |
|
---|
| 699 | const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
|
---|
| 700 | _Tp(1) - __x);
|
---|
| 701 | const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
|
---|
| 702 | _Tp(1) - __x);
|
---|
| 703 |
|
---|
| 704 | const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
|
---|
| 705 |
|
---|
| 706 | return __F;
|
---|
| 707 | }
|
---|
| 708 | }
|
---|
| 709 |
|
---|
| 710 |
|
---|
| 711 | /**
|
---|
| 712 | * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
|
---|
| 713 | *
|
---|
| 714 | * The hypogeometric function is defined by
|
---|
| 715 | * @f[
|
---|
| 716 | * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
|
---|
| 717 | * \sum_{n=0}^{\infty}
|
---|
| 718 | * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
|
---|
| 719 | * \frac{x^n}{n!}
|
---|
| 720 | * @f]
|
---|
| 721 | *
|
---|
| 722 | * @param __a The first @a numerator parameter.
|
---|
| 723 | * @param __a The second @a numerator parameter.
|
---|
| 724 | * @param __c The @a denominator parameter.
|
---|
| 725 | * @param __x The argument of the confluent hypergeometric function.
|
---|
| 726 | * @return The confluent hypergeometric function.
|
---|
| 727 | */
|
---|
| 728 | template<typename _Tp>
|
---|
| 729 | _Tp
|
---|
| 730 | __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
|
---|
| 731 | {
|
---|
| 732 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 733 | const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a);
|
---|
| 734 | const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b);
|
---|
| 735 | const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
|
---|
| 736 | #else
|
---|
| 737 | const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
|
---|
| 738 | const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
|
---|
| 739 | const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
|
---|
| 740 | #endif
|
---|
| 741 | const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
|
---|
| 742 | if (std::abs(__x) >= _Tp(1))
|
---|
| 743 | std::__throw_domain_error(__N("Argument outside unit circle "
|
---|
| 744 | "in __hyperg."));
|
---|
| 745 | else if (__isnan(__a) || __isnan(__b)
|
---|
| 746 | || __isnan(__c) || __isnan(__x))
|
---|
| 747 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 748 | else if (__c_nint == __c && __c_nint <= _Tp(0))
|
---|
| 749 | return std::numeric_limits<_Tp>::infinity();
|
---|
| 750 | else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
|
---|
| 751 | return std::pow(_Tp(1) - __x, __c - __a - __b);
|
---|
| 752 | else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
|
---|
| 753 | && __x >= _Tp(0) && __x < _Tp(0.995L))
|
---|
| 754 | return __hyperg_series(__a, __b, __c, __x);
|
---|
| 755 | else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
|
---|
| 756 | {
|
---|
| 757 | // For integer a and b the hypergeometric function is a
|
---|
| 758 | // finite polynomial.
|
---|
| 759 | if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
|
---|
| 760 | return __hyperg_series(__a_nint, __b, __c, __x);
|
---|
| 761 | else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
|
---|
| 762 | return __hyperg_series(__a, __b_nint, __c, __x);
|
---|
| 763 | else if (__x < -_Tp(0.25L))
|
---|
| 764 | return __hyperg_luke(__a, __b, __c, __x);
|
---|
| 765 | else if (__x < _Tp(0.5L))
|
---|
| 766 | return __hyperg_series(__a, __b, __c, __x);
|
---|
| 767 | else
|
---|
| 768 | if (std::abs(__c) > _Tp(10))
|
---|
| 769 | return __hyperg_series(__a, __b, __c, __x);
|
---|
| 770 | else
|
---|
| 771 | return __hyperg_reflect(__a, __b, __c, __x);
|
---|
| 772 | }
|
---|
| 773 | else
|
---|
| 774 | return __hyperg_luke(__a, __b, __c, __x);
|
---|
| 775 | }
|
---|
| 776 | } // namespace __detail
|
---|
| 777 | #undef _GLIBCXX_MATH_NS
|
---|
| 778 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
| 779 | } // namespace tr1
|
---|
| 780 | #endif
|
---|
| 781 |
|
---|
| 782 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
| 783 | }
|
---|
| 784 |
|
---|
| 785 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|
---|