1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/legendre_function.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | // (1) Handbook of Mathematical Functions,
|
---|
36 | // ed. Milton Abramowitz and Irene A. Stegun,
|
---|
37 | // Dover Publications,
|
---|
38 | // Section 8, pp. 331-341
|
---|
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
42 | // 2nd ed, pp. 252-254
|
---|
43 |
|
---|
44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
---|
45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
|
---|
46 |
|
---|
47 | #include <tr1/special_function_util.h>
|
---|
48 |
|
---|
49 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
50 | {
|
---|
51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
52 |
|
---|
53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
54 | # define _GLIBCXX_MATH_NS ::std
|
---|
55 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
56 | namespace tr1
|
---|
57 | {
|
---|
58 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
59 | #else
|
---|
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
61 | #endif
|
---|
62 | // [5.2] Special functions
|
---|
63 |
|
---|
64 | // Implementation-space details.
|
---|
65 | namespace __detail
|
---|
66 | {
|
---|
67 | /**
|
---|
68 | * @brief Return the Legendre polynomial by recursion on degree
|
---|
69 | * @f$ l @f$.
|
---|
70 | *
|
---|
71 | * The Legendre function of @f$ l @f$ and @f$ x @f$,
|
---|
72 | * @f$ P_l(x) @f$, is defined by:
|
---|
73 | * @f[
|
---|
74 | * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
---|
75 | * @f]
|
---|
76 | *
|
---|
77 | * @param l The degree of the Legendre polynomial. @f$l >= 0@f$.
|
---|
78 | * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
---|
79 | */
|
---|
80 | template<typename _Tp>
|
---|
81 | _Tp
|
---|
82 | __poly_legendre_p(unsigned int __l, _Tp __x)
|
---|
83 | {
|
---|
84 |
|
---|
85 | if (__isnan(__x))
|
---|
86 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
87 | else if (__x == +_Tp(1))
|
---|
88 | return +_Tp(1);
|
---|
89 | else if (__x == -_Tp(1))
|
---|
90 | return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
|
---|
91 | else
|
---|
92 | {
|
---|
93 | _Tp __p_lm2 = _Tp(1);
|
---|
94 | if (__l == 0)
|
---|
95 | return __p_lm2;
|
---|
96 |
|
---|
97 | _Tp __p_lm1 = __x;
|
---|
98 | if (__l == 1)
|
---|
99 | return __p_lm1;
|
---|
100 |
|
---|
101 | _Tp __p_l = 0;
|
---|
102 | for (unsigned int __ll = 2; __ll <= __l; ++__ll)
|
---|
103 | {
|
---|
104 | // This arrangement is supposed to be better for roundoff
|
---|
105 | // protection, Arfken, 2nd Ed, Eq 12.17a.
|
---|
106 | __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
|
---|
107 | - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
|
---|
108 | __p_lm2 = __p_lm1;
|
---|
109 | __p_lm1 = __p_l;
|
---|
110 | }
|
---|
111 |
|
---|
112 | return __p_l;
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * @brief Return the associated Legendre function by recursion
|
---|
119 | * on @f$ l @f$.
|
---|
120 | *
|
---|
121 | * The associated Legendre function is derived from the Legendre function
|
---|
122 | * @f$ P_l(x) @f$ by the Rodrigues formula:
|
---|
123 | * @f[
|
---|
124 | * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
---|
125 | * @f]
|
---|
126 | * @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$.
|
---|
127 | *
|
---|
128 | * @param l The degree of the associated Legendre function.
|
---|
129 | * @f$ l >= 0 @f$.
|
---|
130 | * @param m The order of the associated Legendre function.
|
---|
131 | * @param x The argument of the associated Legendre function.
|
---|
132 | * @f$ |x| <= 1 @f$.
|
---|
133 | * @param phase The phase of the associated Legendre function.
|
---|
134 | * Use -1 for the Condon-Shortley phase convention.
|
---|
135 | */
|
---|
136 | template<typename _Tp>
|
---|
137 | _Tp
|
---|
138 | __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,
|
---|
139 | _Tp __phase = _Tp(+1))
|
---|
140 | {
|
---|
141 |
|
---|
142 | if (__m > __l)
|
---|
143 | return _Tp(0);
|
---|
144 | else if (__isnan(__x))
|
---|
145 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
146 | else if (__m == 0)
|
---|
147 | return __poly_legendre_p(__l, __x);
|
---|
148 | else
|
---|
149 | {
|
---|
150 | _Tp __p_mm = _Tp(1);
|
---|
151 | if (__m > 0)
|
---|
152 | {
|
---|
153 | // Two square roots seem more accurate more of the time
|
---|
154 | // than just one.
|
---|
155 | _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
|
---|
156 | _Tp __fact = _Tp(1);
|
---|
157 | for (unsigned int __i = 1; __i <= __m; ++__i)
|
---|
158 | {
|
---|
159 | __p_mm *= __phase * __fact * __root;
|
---|
160 | __fact += _Tp(2);
|
---|
161 | }
|
---|
162 | }
|
---|
163 | if (__l == __m)
|
---|
164 | return __p_mm;
|
---|
165 |
|
---|
166 | _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
|
---|
167 | if (__l == __m + 1)
|
---|
168 | return __p_mp1m;
|
---|
169 |
|
---|
170 | _Tp __p_lm2m = __p_mm;
|
---|
171 | _Tp __P_lm1m = __p_mp1m;
|
---|
172 | _Tp __p_lm = _Tp(0);
|
---|
173 | for (unsigned int __j = __m + 2; __j <= __l; ++__j)
|
---|
174 | {
|
---|
175 | __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
|
---|
176 | - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
|
---|
177 | __p_lm2m = __P_lm1m;
|
---|
178 | __P_lm1m = __p_lm;
|
---|
179 | }
|
---|
180 |
|
---|
181 | return __p_lm;
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 | /**
|
---|
187 | * @brief Return the spherical associated Legendre function.
|
---|
188 | *
|
---|
189 | * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
|
---|
190 | * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
|
---|
191 | * @f[
|
---|
192 | * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
|
---|
193 | * \frac{(l-m)!}{(l+m)!}]
|
---|
194 | * P_l^m(\cos\theta) \exp^{im\phi}
|
---|
195 | * @f]
|
---|
196 | * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
|
---|
197 | * associated Legendre function.
|
---|
198 | *
|
---|
199 | * This function differs from the associated Legendre function by
|
---|
200 | * argument (@f$x = \cos(\theta)@f$) and by a normalization factor
|
---|
201 | * but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
---|
202 | * and so this function is stable for larger differences of @f$ l @f$
|
---|
203 | * and @f$ m @f$.
|
---|
204 | * @note Unlike the case for __assoc_legendre_p the Condon-Shortley
|
---|
205 | * phase factor @f$ (-1)^m @f$ is present here.
|
---|
206 | * @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$.
|
---|
207 | *
|
---|
208 | * @param l The degree of the spherical associated Legendre function.
|
---|
209 | * @f$ l >= 0 @f$.
|
---|
210 | * @param m The order of the spherical associated Legendre function.
|
---|
211 | * @param theta The radian angle argument of the spherical associated
|
---|
212 | * Legendre function.
|
---|
213 | */
|
---|
214 | template <typename _Tp>
|
---|
215 | _Tp
|
---|
216 | __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
|
---|
217 | {
|
---|
218 | if (__isnan(__theta))
|
---|
219 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
220 |
|
---|
221 | const _Tp __x = std::cos(__theta);
|
---|
222 |
|
---|
223 | if (__m > __l)
|
---|
224 | return _Tp(0);
|
---|
225 | else if (__m == 0)
|
---|
226 | {
|
---|
227 | _Tp __P = __poly_legendre_p(__l, __x);
|
---|
228 | _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
|
---|
229 | / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
---|
230 | __P *= __fact;
|
---|
231 | return __P;
|
---|
232 | }
|
---|
233 | else if (__x == _Tp(1) || __x == -_Tp(1))
|
---|
234 | {
|
---|
235 | // m > 0 here
|
---|
236 | return _Tp(0);
|
---|
237 | }
|
---|
238 | else
|
---|
239 | {
|
---|
240 | // m > 0 and |x| < 1 here
|
---|
241 |
|
---|
242 | // Starting value for recursion.
|
---|
243 | // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
|
---|
244 | // (-1)^m (1-x^2)^(m/2) / pi^(1/4)
|
---|
245 | const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
|
---|
246 | const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
|
---|
247 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
248 | const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x);
|
---|
249 | #else
|
---|
250 | const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
|
---|
251 | #endif
|
---|
252 | // Gamma(m+1/2) / Gamma(m)
|
---|
253 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
254 | const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L)))
|
---|
255 | - _GLIBCXX_MATH_NS::lgamma(_Tp(__m));
|
---|
256 | #else
|
---|
257 | const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
|
---|
258 | - __log_gamma(_Tp(__m));
|
---|
259 | #endif
|
---|
260 | const _Tp __lnpre_val =
|
---|
261 | -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
---|
262 | + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
---|
263 | const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
---|
264 | / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
---|
265 | _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
---|
266 | _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
---|
267 |
|
---|
268 | if (__l == __m)
|
---|
269 | return __y_mm;
|
---|
270 | else if (__l == __m + 1)
|
---|
271 | return __y_mp1m;
|
---|
272 | else
|
---|
273 | {
|
---|
274 | _Tp __y_lm = _Tp(0);
|
---|
275 |
|
---|
276 | // Compute Y_l^m, l > m+1, upward recursion on l.
|
---|
277 | for (unsigned int __ll = __m + 2; __ll <= __l; ++__ll)
|
---|
278 | {
|
---|
279 | const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
|
---|
280 | const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
|
---|
281 | const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
|
---|
282 | * _Tp(2 * __ll - 1));
|
---|
283 | const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
|
---|
284 | / _Tp(2 * __ll - 3));
|
---|
285 | __y_lm = (__x * __y_mp1m * __fact1
|
---|
286 | - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
|
---|
287 | __y_mm = __y_mp1m;
|
---|
288 | __y_mp1m = __y_lm;
|
---|
289 | }
|
---|
290 |
|
---|
291 | return __y_lm;
|
---|
292 | }
|
---|
293 | }
|
---|
294 | }
|
---|
295 | } // namespace __detail
|
---|
296 | #undef _GLIBCXX_MATH_NS
|
---|
297 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
298 | } // namespace tr1
|
---|
299 | #endif
|
---|
300 |
|
---|
301 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
302 | }
|
---|
303 |
|
---|
304 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
---|