[1166] | 1 | // Special functions -*- C++ -*-
|
---|
| 2 |
|
---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
| 4 | //
|
---|
| 5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
| 6 | // software; you can redistribute it and/or modify it under the
|
---|
| 7 | // terms of the GNU General Public License as published by the
|
---|
| 8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
| 9 | // any later version.
|
---|
| 10 | //
|
---|
| 11 | // This library is distributed in the hope that it will be useful,
|
---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | // GNU General Public License for more details.
|
---|
| 15 | //
|
---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
| 17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
| 18 | // 3.1, as published by the Free Software Foundation.
|
---|
| 19 |
|
---|
| 20 | // You should have received a copy of the GNU General Public License and
|
---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
| 23 | // <http://www.gnu.org/licenses/>.
|
---|
| 24 |
|
---|
| 25 | /** @file tr1/modified_bessel_func.tcc
|
---|
| 26 | * This is an internal header file, included by other library headers.
|
---|
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | //
|
---|
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
| 32 | //
|
---|
| 33 |
|
---|
| 34 | // Written by Edward Smith-Rowland.
|
---|
| 35 | //
|
---|
| 36 | // References:
|
---|
| 37 | // (1) Handbook of Mathematical Functions,
|
---|
| 38 | // Ed. Milton Abramowitz and Irene A. Stegun,
|
---|
| 39 | // Dover Publications,
|
---|
| 40 | // Section 9, pp. 355-434, Section 10 pp. 435-478
|
---|
| 41 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
| 42 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
| 43 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
| 44 | // 2nd ed, pp. 246-249.
|
---|
| 45 |
|
---|
| 46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
|
---|
| 47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
|
---|
| 48 |
|
---|
| 49 | #include <tr1/special_function_util.h>
|
---|
| 50 |
|
---|
| 51 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
| 52 | {
|
---|
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
| 54 |
|
---|
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
| 56 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
| 57 | namespace tr1
|
---|
| 58 | {
|
---|
| 59 | #else
|
---|
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
| 61 | #endif
|
---|
| 62 | // [5.2] Special functions
|
---|
| 63 |
|
---|
| 64 | // Implementation-space details.
|
---|
| 65 | namespace __detail
|
---|
| 66 | {
|
---|
| 67 | /**
|
---|
| 68 | * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
|
---|
| 69 | * @f$ K_\nu(x) @f$ and their first derivatives
|
---|
| 70 | * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
|
---|
| 71 | * These four functions are computed together for numerical
|
---|
| 72 | * stability.
|
---|
| 73 | *
|
---|
| 74 | * @param __nu The order of the Bessel functions.
|
---|
| 75 | * @param __x The argument of the Bessel functions.
|
---|
| 76 | * @param __Inu The output regular modified Bessel function.
|
---|
| 77 | * @param __Knu The output irregular modified Bessel function.
|
---|
| 78 | * @param __Ipnu The output derivative of the regular
|
---|
| 79 | * modified Bessel function.
|
---|
| 80 | * @param __Kpnu The output derivative of the irregular
|
---|
| 81 | * modified Bessel function.
|
---|
| 82 | */
|
---|
| 83 | template <typename _Tp>
|
---|
| 84 | void
|
---|
| 85 | __bessel_ik(_Tp __nu, _Tp __x,
|
---|
| 86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
|
---|
| 87 | {
|
---|
| 88 | if (__x == _Tp(0))
|
---|
| 89 | {
|
---|
| 90 | if (__nu == _Tp(0))
|
---|
| 91 | {
|
---|
| 92 | __Inu = _Tp(1);
|
---|
| 93 | __Ipnu = _Tp(0);
|
---|
| 94 | }
|
---|
| 95 | else if (__nu == _Tp(1))
|
---|
| 96 | {
|
---|
| 97 | __Inu = _Tp(0);
|
---|
| 98 | __Ipnu = _Tp(0.5L);
|
---|
| 99 | }
|
---|
| 100 | else
|
---|
| 101 | {
|
---|
| 102 | __Inu = _Tp(0);
|
---|
| 103 | __Ipnu = _Tp(0);
|
---|
| 104 | }
|
---|
| 105 | __Knu = std::numeric_limits<_Tp>::infinity();
|
---|
| 106 | __Kpnu = -std::numeric_limits<_Tp>::infinity();
|
---|
| 107 | return;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
|
---|
| 112 | const int __max_iter = 15000;
|
---|
| 113 | const _Tp __x_min = _Tp(2);
|
---|
| 114 |
|
---|
| 115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L));
|
---|
| 116 |
|
---|
| 117 | const _Tp __mu = __nu - __nl;
|
---|
| 118 | const _Tp __mu2 = __mu * __mu;
|
---|
| 119 | const _Tp __xi = _Tp(1) / __x;
|
---|
| 120 | const _Tp __xi2 = _Tp(2) * __xi;
|
---|
| 121 | _Tp __h = __nu * __xi;
|
---|
| 122 | if ( __h < __fp_min )
|
---|
| 123 | __h = __fp_min;
|
---|
| 124 | _Tp __b = __xi2 * __nu;
|
---|
| 125 | _Tp __d = _Tp(0);
|
---|
| 126 | _Tp __c = __h;
|
---|
| 127 | int __i;
|
---|
| 128 | for ( __i = 1; __i <= __max_iter; ++__i )
|
---|
| 129 | {
|
---|
| 130 | __b += __xi2;
|
---|
| 131 | __d = _Tp(1) / (__b + __d);
|
---|
| 132 | __c = __b + _Tp(1) / __c;
|
---|
| 133 | const _Tp __del = __c * __d;
|
---|
| 134 | __h *= __del;
|
---|
| 135 | if (std::abs(__del - _Tp(1)) < __eps)
|
---|
| 136 | break;
|
---|
| 137 | }
|
---|
| 138 | if (__i > __max_iter)
|
---|
| 139 | std::__throw_runtime_error(__N("Argument x too large "
|
---|
| 140 | "in __bessel_ik; "
|
---|
| 141 | "try asymptotic expansion."));
|
---|
| 142 | _Tp __Inul = __fp_min;
|
---|
| 143 | _Tp __Ipnul = __h * __Inul;
|
---|
| 144 | _Tp __Inul1 = __Inul;
|
---|
| 145 | _Tp __Ipnu1 = __Ipnul;
|
---|
| 146 | _Tp __fact = __nu * __xi;
|
---|
| 147 | for (int __l = __nl; __l >= 1; --__l)
|
---|
| 148 | {
|
---|
| 149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul;
|
---|
| 150 | __fact -= __xi;
|
---|
| 151 | __Ipnul = __fact * __Inutemp + __Inul;
|
---|
| 152 | __Inul = __Inutemp;
|
---|
| 153 | }
|
---|
| 154 | _Tp __f = __Ipnul / __Inul;
|
---|
| 155 | _Tp __Kmu, __Knu1;
|
---|
| 156 | if (__x < __x_min)
|
---|
| 157 | {
|
---|
| 158 | const _Tp __x2 = __x / _Tp(2);
|
---|
| 159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
|
---|
| 160 | const _Tp __fact = (std::abs(__pimu) < __eps
|
---|
| 161 | ? _Tp(1) : __pimu / std::sin(__pimu));
|
---|
| 162 | _Tp __d = -std::log(__x2);
|
---|
| 163 | _Tp __e = __mu * __d;
|
---|
| 164 | const _Tp __fact2 = (std::abs(__e) < __eps
|
---|
| 165 | ? _Tp(1) : std::sinh(__e) / __e);
|
---|
| 166 | _Tp __gam1, __gam2, __gampl, __gammi;
|
---|
| 167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
|
---|
| 168 | _Tp __ff = __fact
|
---|
| 169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
|
---|
| 170 | _Tp __sum = __ff;
|
---|
| 171 | __e = std::exp(__e);
|
---|
| 172 | _Tp __p = __e / (_Tp(2) * __gampl);
|
---|
| 173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
|
---|
| 174 | _Tp __c = _Tp(1);
|
---|
| 175 | __d = __x2 * __x2;
|
---|
| 176 | _Tp __sum1 = __p;
|
---|
| 177 | int __i;
|
---|
| 178 | for (__i = 1; __i <= __max_iter; ++__i)
|
---|
| 179 | {
|
---|
| 180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
|
---|
| 181 | __c *= __d / __i;
|
---|
| 182 | __p /= __i - __mu;
|
---|
| 183 | __q /= __i + __mu;
|
---|
| 184 | const _Tp __del = __c * __ff;
|
---|
| 185 | __sum += __del;
|
---|
| 186 | const _Tp __del1 = __c * (__p - __i * __ff);
|
---|
| 187 | __sum1 += __del1;
|
---|
| 188 | if (std::abs(__del) < __eps * std::abs(__sum))
|
---|
| 189 | break;
|
---|
| 190 | }
|
---|
| 191 | if (__i > __max_iter)
|
---|
| 192 | std::__throw_runtime_error(__N("Bessel k series failed to converge "
|
---|
| 193 | "in __bessel_ik."));
|
---|
| 194 | __Kmu = __sum;
|
---|
| 195 | __Knu1 = __sum1 * __xi2;
|
---|
| 196 | }
|
---|
| 197 | else
|
---|
| 198 | {
|
---|
| 199 | _Tp __b = _Tp(2) * (_Tp(1) + __x);
|
---|
| 200 | _Tp __d = _Tp(1) / __b;
|
---|
| 201 | _Tp __delh = __d;
|
---|
| 202 | _Tp __h = __delh;
|
---|
| 203 | _Tp __q1 = _Tp(0);
|
---|
| 204 | _Tp __q2 = _Tp(1);
|
---|
| 205 | _Tp __a1 = _Tp(0.25L) - __mu2;
|
---|
| 206 | _Tp __q = __c = __a1;
|
---|
| 207 | _Tp __a = -__a1;
|
---|
| 208 | _Tp __s = _Tp(1) + __q * __delh;
|
---|
| 209 | int __i;
|
---|
| 210 | for (__i = 2; __i <= __max_iter; ++__i)
|
---|
| 211 | {
|
---|
| 212 | __a -= 2 * (__i - 1);
|
---|
| 213 | __c = -__a * __c / __i;
|
---|
| 214 | const _Tp __qnew = (__q1 - __b * __q2) / __a;
|
---|
| 215 | __q1 = __q2;
|
---|
| 216 | __q2 = __qnew;
|
---|
| 217 | __q += __c * __qnew;
|
---|
| 218 | __b += _Tp(2);
|
---|
| 219 | __d = _Tp(1) / (__b + __a * __d);
|
---|
| 220 | __delh = (__b * __d - _Tp(1)) * __delh;
|
---|
| 221 | __h += __delh;
|
---|
| 222 | const _Tp __dels = __q * __delh;
|
---|
| 223 | __s += __dels;
|
---|
| 224 | if ( std::abs(__dels / __s) < __eps )
|
---|
| 225 | break;
|
---|
| 226 | }
|
---|
| 227 | if (__i > __max_iter)
|
---|
| 228 | std::__throw_runtime_error(__N("Steed's method failed "
|
---|
| 229 | "in __bessel_ik."));
|
---|
| 230 | __h = __a1 * __h;
|
---|
| 231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
|
---|
| 232 | * std::exp(-__x) / __s;
|
---|
| 233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
|
---|
| 237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
|
---|
| 238 | __Inu = __Inumu * __Inul1 / __Inul;
|
---|
| 239 | __Ipnu = __Inumu * __Ipnu1 / __Inul;
|
---|
| 240 | for ( __i = 1; __i <= __nl; ++__i )
|
---|
| 241 | {
|
---|
| 242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
|
---|
| 243 | __Kmu = __Knu1;
|
---|
| 244 | __Knu1 = __Knutemp;
|
---|
| 245 | }
|
---|
| 246 | __Knu = __Kmu;
|
---|
| 247 | __Kpnu = __nu * __xi * __Kmu - __Knu1;
|
---|
| 248 |
|
---|
| 249 | return;
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 |
|
---|
| 253 | /**
|
---|
| 254 | * @brief Return the regular modified Bessel function of order
|
---|
| 255 | * \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
|
---|
| 256 | *
|
---|
| 257 | * The regular modified cylindrical Bessel function is:
|
---|
| 258 | * @f[
|
---|
| 259 | * I_{\nu}(x) = \sum_{k=0}^{\infty}
|
---|
| 260 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
|
---|
| 261 | * @f]
|
---|
| 262 | *
|
---|
| 263 | * @param __nu The order of the regular modified Bessel function.
|
---|
| 264 | * @param __x The argument of the regular modified Bessel function.
|
---|
| 265 | * @return The output regular modified Bessel function.
|
---|
| 266 | */
|
---|
| 267 | template<typename _Tp>
|
---|
| 268 | _Tp
|
---|
| 269 | __cyl_bessel_i(_Tp __nu, _Tp __x)
|
---|
| 270 | {
|
---|
| 271 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
| 272 | std::__throw_domain_error(__N("Bad argument "
|
---|
| 273 | "in __cyl_bessel_i."));
|
---|
| 274 | else if (__isnan(__nu) || __isnan(__x))
|
---|
| 275 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
|
---|
| 277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
|
---|
| 278 | else
|
---|
| 279 | {
|
---|
| 280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
|
---|
| 281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
| 282 | return __I_nu;
|
---|
| 283 | }
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 |
|
---|
| 287 | /**
|
---|
| 288 | * @brief Return the irregular modified Bessel function
|
---|
| 289 | * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
|
---|
| 290 | *
|
---|
| 291 | * The irregular modified Bessel function is defined by:
|
---|
| 292 | * @f[
|
---|
| 293 | * K_{\nu}(x) = \frac{\pi}{2}
|
---|
| 294 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
|
---|
| 295 | * @f]
|
---|
| 296 | * where for integral \f$ \nu = n \f$ a limit is taken:
|
---|
| 297 | * \f$ lim_{\nu \to n} \f$.
|
---|
| 298 | *
|
---|
| 299 | * @param __nu The order of the irregular modified Bessel function.
|
---|
| 300 | * @param __x The argument of the irregular modified Bessel function.
|
---|
| 301 | * @return The output irregular modified Bessel function.
|
---|
| 302 | */
|
---|
| 303 | template<typename _Tp>
|
---|
| 304 | _Tp
|
---|
| 305 | __cyl_bessel_k(_Tp __nu, _Tp __x)
|
---|
| 306 | {
|
---|
| 307 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
| 308 | std::__throw_domain_error(__N("Bad argument "
|
---|
| 309 | "in __cyl_bessel_k."));
|
---|
| 310 | else if (__isnan(__nu) || __isnan(__x))
|
---|
| 311 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 312 | else
|
---|
| 313 | {
|
---|
| 314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
|
---|
| 315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
| 316 | return __K_nu;
|
---|
| 317 | }
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 |
|
---|
| 321 | /**
|
---|
| 322 | * @brief Compute the spherical modified Bessel functions
|
---|
| 323 | * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
|
---|
| 324 | * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
|
---|
| 325 | * respectively.
|
---|
| 326 | *
|
---|
| 327 | * @param __n The order of the modified spherical Bessel function.
|
---|
| 328 | * @param __x The argument of the modified spherical Bessel function.
|
---|
| 329 | * @param __i_n The output regular modified spherical Bessel function.
|
---|
| 330 | * @param __k_n The output irregular modified spherical
|
---|
| 331 | * Bessel function.
|
---|
| 332 | * @param __ip_n The output derivative of the regular modified
|
---|
| 333 | * spherical Bessel function.
|
---|
| 334 | * @param __kp_n The output derivative of the irregular modified
|
---|
| 335 | * spherical Bessel function.
|
---|
| 336 | */
|
---|
| 337 | template <typename _Tp>
|
---|
| 338 | void
|
---|
| 339 | __sph_bessel_ik(unsigned int __n, _Tp __x,
|
---|
| 340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
|
---|
| 341 | {
|
---|
| 342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L);
|
---|
| 343 |
|
---|
| 344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
|
---|
| 345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
| 346 |
|
---|
| 347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
|
---|
| 348 | / std::sqrt(__x);
|
---|
| 349 |
|
---|
| 350 | __i_n = __factor * __I_nu;
|
---|
| 351 | __k_n = __factor * __K_nu;
|
---|
| 352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
|
---|
| 353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
|
---|
| 354 |
|
---|
| 355 | return;
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 |
|
---|
| 359 | /**
|
---|
| 360 | * @brief Compute the Airy functions
|
---|
| 361 | * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
|
---|
| 362 | * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
|
---|
| 363 | * respectively.
|
---|
| 364 | *
|
---|
| 365 | * @param __x The argument of the Airy functions.
|
---|
| 366 | * @param __Ai The output Airy function of the first kind.
|
---|
| 367 | * @param __Bi The output Airy function of the second kind.
|
---|
| 368 | * @param __Aip The output derivative of the Airy function
|
---|
| 369 | * of the first kind.
|
---|
| 370 | * @param __Bip The output derivative of the Airy function
|
---|
| 371 | * of the second kind.
|
---|
| 372 | */
|
---|
| 373 | template <typename _Tp>
|
---|
| 374 | void
|
---|
| 375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
|
---|
| 376 | {
|
---|
| 377 | const _Tp __absx = std::abs(__x);
|
---|
| 378 | const _Tp __rootx = std::sqrt(__absx);
|
---|
| 379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
|
---|
| 380 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity();
|
---|
| 381 |
|
---|
| 382 | if (__isnan(__x))
|
---|
| 383 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 384 | else if (__z == _S_inf)
|
---|
| 385 | {
|
---|
| 386 | __Aip = __Ai = _Tp(0);
|
---|
| 387 | __Bip = __Bi = _S_inf;
|
---|
| 388 | }
|
---|
| 389 | else if (__z == -_S_inf)
|
---|
| 390 | __Bip = __Aip = __Bi = __Ai = _Tp(0);
|
---|
| 391 | else if (__x > _Tp(0))
|
---|
| 392 | {
|
---|
| 393 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
|
---|
| 394 |
|
---|
| 395 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
| 396 | __Ai = __rootx * __K_nu
|
---|
| 397 | / (__numeric_constants<_Tp>::__sqrt3()
|
---|
| 398 | * __numeric_constants<_Tp>::__pi());
|
---|
| 399 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
|
---|
| 400 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
|
---|
| 401 |
|
---|
| 402 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
| 403 | __Aip = -__x * __K_nu
|
---|
| 404 | / (__numeric_constants<_Tp>::__sqrt3()
|
---|
| 405 | * __numeric_constants<_Tp>::__pi());
|
---|
| 406 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
|
---|
| 407 | + _Tp(2) * __I_nu
|
---|
| 408 | / __numeric_constants<_Tp>::__sqrt3());
|
---|
| 409 | }
|
---|
| 410 | else if (__x < _Tp(0))
|
---|
| 411 | {
|
---|
| 412 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
|
---|
| 413 |
|
---|
| 414 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
| 415 | __Ai = __rootx * (__J_nu
|
---|
| 416 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
|
---|
| 417 | __Bi = -__rootx * (__N_nu
|
---|
| 418 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
|
---|
| 419 |
|
---|
| 420 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
| 421 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
|
---|
| 422 | + __J_nu) / _Tp(2);
|
---|
| 423 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
|
---|
| 424 | - __N_nu) / _Tp(2);
|
---|
| 425 | }
|
---|
| 426 | else
|
---|
| 427 | {
|
---|
| 428 | // Reference:
|
---|
| 429 | // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
|
---|
| 430 | // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
|
---|
| 431 | __Ai = _Tp(0.35502805388781723926L);
|
---|
| 432 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
|
---|
| 433 |
|
---|
| 434 | // Reference:
|
---|
| 435 | // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
|
---|
| 436 | // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
|
---|
| 437 | __Aip = -_Tp(0.25881940379280679840L);
|
---|
| 438 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 | return;
|
---|
| 442 | }
|
---|
| 443 | } // namespace __detail
|
---|
| 444 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
| 445 | } // namespace tr1
|
---|
| 446 | #endif
|
---|
| 447 |
|
---|
| 448 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
|
---|