1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/modified_bessel_func.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland.
|
---|
35 | //
|
---|
36 | // References:
|
---|
37 | // (1) Handbook of Mathematical Functions,
|
---|
38 | // Ed. Milton Abramowitz and Irene A. Stegun,
|
---|
39 | // Dover Publications,
|
---|
40 | // Section 9, pp. 355-434, Section 10 pp. 435-478
|
---|
41 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
42 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
---|
43 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
---|
44 | // 2nd ed, pp. 246-249.
|
---|
45 |
|
---|
46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
|
---|
47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
|
---|
48 |
|
---|
49 | #include <tr1/special_function_util.h>
|
---|
50 |
|
---|
51 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
52 | {
|
---|
53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
54 |
|
---|
55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
56 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
57 | namespace tr1
|
---|
58 | {
|
---|
59 | #else
|
---|
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
61 | #endif
|
---|
62 | // [5.2] Special functions
|
---|
63 |
|
---|
64 | // Implementation-space details.
|
---|
65 | namespace __detail
|
---|
66 | {
|
---|
67 | /**
|
---|
68 | * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
|
---|
69 | * @f$ K_\nu(x) @f$ and their first derivatives
|
---|
70 | * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
|
---|
71 | * These four functions are computed together for numerical
|
---|
72 | * stability.
|
---|
73 | *
|
---|
74 | * @param __nu The order of the Bessel functions.
|
---|
75 | * @param __x The argument of the Bessel functions.
|
---|
76 | * @param __Inu The output regular modified Bessel function.
|
---|
77 | * @param __Knu The output irregular modified Bessel function.
|
---|
78 | * @param __Ipnu The output derivative of the regular
|
---|
79 | * modified Bessel function.
|
---|
80 | * @param __Kpnu The output derivative of the irregular
|
---|
81 | * modified Bessel function.
|
---|
82 | */
|
---|
83 | template <typename _Tp>
|
---|
84 | void
|
---|
85 | __bessel_ik(_Tp __nu, _Tp __x,
|
---|
86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
|
---|
87 | {
|
---|
88 | if (__x == _Tp(0))
|
---|
89 | {
|
---|
90 | if (__nu == _Tp(0))
|
---|
91 | {
|
---|
92 | __Inu = _Tp(1);
|
---|
93 | __Ipnu = _Tp(0);
|
---|
94 | }
|
---|
95 | else if (__nu == _Tp(1))
|
---|
96 | {
|
---|
97 | __Inu = _Tp(0);
|
---|
98 | __Ipnu = _Tp(0.5L);
|
---|
99 | }
|
---|
100 | else
|
---|
101 | {
|
---|
102 | __Inu = _Tp(0);
|
---|
103 | __Ipnu = _Tp(0);
|
---|
104 | }
|
---|
105 | __Knu = std::numeric_limits<_Tp>::infinity();
|
---|
106 | __Kpnu = -std::numeric_limits<_Tp>::infinity();
|
---|
107 | return;
|
---|
108 | }
|
---|
109 |
|
---|
110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
|
---|
112 | const int __max_iter = 15000;
|
---|
113 | const _Tp __x_min = _Tp(2);
|
---|
114 |
|
---|
115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L));
|
---|
116 |
|
---|
117 | const _Tp __mu = __nu - __nl;
|
---|
118 | const _Tp __mu2 = __mu * __mu;
|
---|
119 | const _Tp __xi = _Tp(1) / __x;
|
---|
120 | const _Tp __xi2 = _Tp(2) * __xi;
|
---|
121 | _Tp __h = __nu * __xi;
|
---|
122 | if ( __h < __fp_min )
|
---|
123 | __h = __fp_min;
|
---|
124 | _Tp __b = __xi2 * __nu;
|
---|
125 | _Tp __d = _Tp(0);
|
---|
126 | _Tp __c = __h;
|
---|
127 | int __i;
|
---|
128 | for ( __i = 1; __i <= __max_iter; ++__i )
|
---|
129 | {
|
---|
130 | __b += __xi2;
|
---|
131 | __d = _Tp(1) / (__b + __d);
|
---|
132 | __c = __b + _Tp(1) / __c;
|
---|
133 | const _Tp __del = __c * __d;
|
---|
134 | __h *= __del;
|
---|
135 | if (std::abs(__del - _Tp(1)) < __eps)
|
---|
136 | break;
|
---|
137 | }
|
---|
138 | if (__i > __max_iter)
|
---|
139 | std::__throw_runtime_error(__N("Argument x too large "
|
---|
140 | "in __bessel_ik; "
|
---|
141 | "try asymptotic expansion."));
|
---|
142 | _Tp __Inul = __fp_min;
|
---|
143 | _Tp __Ipnul = __h * __Inul;
|
---|
144 | _Tp __Inul1 = __Inul;
|
---|
145 | _Tp __Ipnu1 = __Ipnul;
|
---|
146 | _Tp __fact = __nu * __xi;
|
---|
147 | for (int __l = __nl; __l >= 1; --__l)
|
---|
148 | {
|
---|
149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul;
|
---|
150 | __fact -= __xi;
|
---|
151 | __Ipnul = __fact * __Inutemp + __Inul;
|
---|
152 | __Inul = __Inutemp;
|
---|
153 | }
|
---|
154 | _Tp __f = __Ipnul / __Inul;
|
---|
155 | _Tp __Kmu, __Knu1;
|
---|
156 | if (__x < __x_min)
|
---|
157 | {
|
---|
158 | const _Tp __x2 = __x / _Tp(2);
|
---|
159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
|
---|
160 | const _Tp __fact = (std::abs(__pimu) < __eps
|
---|
161 | ? _Tp(1) : __pimu / std::sin(__pimu));
|
---|
162 | _Tp __d = -std::log(__x2);
|
---|
163 | _Tp __e = __mu * __d;
|
---|
164 | const _Tp __fact2 = (std::abs(__e) < __eps
|
---|
165 | ? _Tp(1) : std::sinh(__e) / __e);
|
---|
166 | _Tp __gam1, __gam2, __gampl, __gammi;
|
---|
167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
|
---|
168 | _Tp __ff = __fact
|
---|
169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
|
---|
170 | _Tp __sum = __ff;
|
---|
171 | __e = std::exp(__e);
|
---|
172 | _Tp __p = __e / (_Tp(2) * __gampl);
|
---|
173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
|
---|
174 | _Tp __c = _Tp(1);
|
---|
175 | __d = __x2 * __x2;
|
---|
176 | _Tp __sum1 = __p;
|
---|
177 | int __i;
|
---|
178 | for (__i = 1; __i <= __max_iter; ++__i)
|
---|
179 | {
|
---|
180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
|
---|
181 | __c *= __d / __i;
|
---|
182 | __p /= __i - __mu;
|
---|
183 | __q /= __i + __mu;
|
---|
184 | const _Tp __del = __c * __ff;
|
---|
185 | __sum += __del;
|
---|
186 | const _Tp __del1 = __c * (__p - __i * __ff);
|
---|
187 | __sum1 += __del1;
|
---|
188 | if (std::abs(__del) < __eps * std::abs(__sum))
|
---|
189 | break;
|
---|
190 | }
|
---|
191 | if (__i > __max_iter)
|
---|
192 | std::__throw_runtime_error(__N("Bessel k series failed to converge "
|
---|
193 | "in __bessel_ik."));
|
---|
194 | __Kmu = __sum;
|
---|
195 | __Knu1 = __sum1 * __xi2;
|
---|
196 | }
|
---|
197 | else
|
---|
198 | {
|
---|
199 | _Tp __b = _Tp(2) * (_Tp(1) + __x);
|
---|
200 | _Tp __d = _Tp(1) / __b;
|
---|
201 | _Tp __delh = __d;
|
---|
202 | _Tp __h = __delh;
|
---|
203 | _Tp __q1 = _Tp(0);
|
---|
204 | _Tp __q2 = _Tp(1);
|
---|
205 | _Tp __a1 = _Tp(0.25L) - __mu2;
|
---|
206 | _Tp __q = __c = __a1;
|
---|
207 | _Tp __a = -__a1;
|
---|
208 | _Tp __s = _Tp(1) + __q * __delh;
|
---|
209 | int __i;
|
---|
210 | for (__i = 2; __i <= __max_iter; ++__i)
|
---|
211 | {
|
---|
212 | __a -= 2 * (__i - 1);
|
---|
213 | __c = -__a * __c / __i;
|
---|
214 | const _Tp __qnew = (__q1 - __b * __q2) / __a;
|
---|
215 | __q1 = __q2;
|
---|
216 | __q2 = __qnew;
|
---|
217 | __q += __c * __qnew;
|
---|
218 | __b += _Tp(2);
|
---|
219 | __d = _Tp(1) / (__b + __a * __d);
|
---|
220 | __delh = (__b * __d - _Tp(1)) * __delh;
|
---|
221 | __h += __delh;
|
---|
222 | const _Tp __dels = __q * __delh;
|
---|
223 | __s += __dels;
|
---|
224 | if ( std::abs(__dels / __s) < __eps )
|
---|
225 | break;
|
---|
226 | }
|
---|
227 | if (__i > __max_iter)
|
---|
228 | std::__throw_runtime_error(__N("Steed's method failed "
|
---|
229 | "in __bessel_ik."));
|
---|
230 | __h = __a1 * __h;
|
---|
231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
|
---|
232 | * std::exp(-__x) / __s;
|
---|
233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
|
---|
234 | }
|
---|
235 |
|
---|
236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
|
---|
237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
|
---|
238 | __Inu = __Inumu * __Inul1 / __Inul;
|
---|
239 | __Ipnu = __Inumu * __Ipnu1 / __Inul;
|
---|
240 | for ( __i = 1; __i <= __nl; ++__i )
|
---|
241 | {
|
---|
242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
|
---|
243 | __Kmu = __Knu1;
|
---|
244 | __Knu1 = __Knutemp;
|
---|
245 | }
|
---|
246 | __Knu = __Kmu;
|
---|
247 | __Kpnu = __nu * __xi * __Kmu - __Knu1;
|
---|
248 |
|
---|
249 | return;
|
---|
250 | }
|
---|
251 |
|
---|
252 |
|
---|
253 | /**
|
---|
254 | * @brief Return the regular modified Bessel function of order
|
---|
255 | * \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
|
---|
256 | *
|
---|
257 | * The regular modified cylindrical Bessel function is:
|
---|
258 | * @f[
|
---|
259 | * I_{\nu}(x) = \sum_{k=0}^{\infty}
|
---|
260 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
|
---|
261 | * @f]
|
---|
262 | *
|
---|
263 | * @param __nu The order of the regular modified Bessel function.
|
---|
264 | * @param __x The argument of the regular modified Bessel function.
|
---|
265 | * @return The output regular modified Bessel function.
|
---|
266 | */
|
---|
267 | template<typename _Tp>
|
---|
268 | _Tp
|
---|
269 | __cyl_bessel_i(_Tp __nu, _Tp __x)
|
---|
270 | {
|
---|
271 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
272 | std::__throw_domain_error(__N("Bad argument "
|
---|
273 | "in __cyl_bessel_i."));
|
---|
274 | else if (__isnan(__nu) || __isnan(__x))
|
---|
275 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
|
---|
277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
|
---|
278 | else
|
---|
279 | {
|
---|
280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
|
---|
281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
282 | return __I_nu;
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | /**
|
---|
288 | * @brief Return the irregular modified Bessel function
|
---|
289 | * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
|
---|
290 | *
|
---|
291 | * The irregular modified Bessel function is defined by:
|
---|
292 | * @f[
|
---|
293 | * K_{\nu}(x) = \frac{\pi}{2}
|
---|
294 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
|
---|
295 | * @f]
|
---|
296 | * where for integral \f$ \nu = n \f$ a limit is taken:
|
---|
297 | * \f$ lim_{\nu \to n} \f$.
|
---|
298 | *
|
---|
299 | * @param __nu The order of the irregular modified Bessel function.
|
---|
300 | * @param __x The argument of the irregular modified Bessel function.
|
---|
301 | * @return The output irregular modified Bessel function.
|
---|
302 | */
|
---|
303 | template<typename _Tp>
|
---|
304 | _Tp
|
---|
305 | __cyl_bessel_k(_Tp __nu, _Tp __x)
|
---|
306 | {
|
---|
307 | if (__nu < _Tp(0) || __x < _Tp(0))
|
---|
308 | std::__throw_domain_error(__N("Bad argument "
|
---|
309 | "in __cyl_bessel_k."));
|
---|
310 | else if (__isnan(__nu) || __isnan(__x))
|
---|
311 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
312 | else
|
---|
313 | {
|
---|
314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
|
---|
315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
316 | return __K_nu;
|
---|
317 | }
|
---|
318 | }
|
---|
319 |
|
---|
320 |
|
---|
321 | /**
|
---|
322 | * @brief Compute the spherical modified Bessel functions
|
---|
323 | * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
|
---|
324 | * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
|
---|
325 | * respectively.
|
---|
326 | *
|
---|
327 | * @param __n The order of the modified spherical Bessel function.
|
---|
328 | * @param __x The argument of the modified spherical Bessel function.
|
---|
329 | * @param __i_n The output regular modified spherical Bessel function.
|
---|
330 | * @param __k_n The output irregular modified spherical
|
---|
331 | * Bessel function.
|
---|
332 | * @param __ip_n The output derivative of the regular modified
|
---|
333 | * spherical Bessel function.
|
---|
334 | * @param __kp_n The output derivative of the irregular modified
|
---|
335 | * spherical Bessel function.
|
---|
336 | */
|
---|
337 | template <typename _Tp>
|
---|
338 | void
|
---|
339 | __sph_bessel_ik(unsigned int __n, _Tp __x,
|
---|
340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
|
---|
341 | {
|
---|
342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L);
|
---|
343 |
|
---|
344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
|
---|
345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
346 |
|
---|
347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
|
---|
348 | / std::sqrt(__x);
|
---|
349 |
|
---|
350 | __i_n = __factor * __I_nu;
|
---|
351 | __k_n = __factor * __K_nu;
|
---|
352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
|
---|
353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
|
---|
354 |
|
---|
355 | return;
|
---|
356 | }
|
---|
357 |
|
---|
358 |
|
---|
359 | /**
|
---|
360 | * @brief Compute the Airy functions
|
---|
361 | * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
|
---|
362 | * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
|
---|
363 | * respectively.
|
---|
364 | *
|
---|
365 | * @param __x The argument of the Airy functions.
|
---|
366 | * @param __Ai The output Airy function of the first kind.
|
---|
367 | * @param __Bi The output Airy function of the second kind.
|
---|
368 | * @param __Aip The output derivative of the Airy function
|
---|
369 | * of the first kind.
|
---|
370 | * @param __Bip The output derivative of the Airy function
|
---|
371 | * of the second kind.
|
---|
372 | */
|
---|
373 | template <typename _Tp>
|
---|
374 | void
|
---|
375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
|
---|
376 | {
|
---|
377 | const _Tp __absx = std::abs(__x);
|
---|
378 | const _Tp __rootx = std::sqrt(__absx);
|
---|
379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
|
---|
380 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity();
|
---|
381 |
|
---|
382 | if (__isnan(__x))
|
---|
383 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN();
|
---|
384 | else if (__z == _S_inf)
|
---|
385 | {
|
---|
386 | __Aip = __Ai = _Tp(0);
|
---|
387 | __Bip = __Bi = _S_inf;
|
---|
388 | }
|
---|
389 | else if (__z == -_S_inf)
|
---|
390 | __Bip = __Aip = __Bi = __Ai = _Tp(0);
|
---|
391 | else if (__x > _Tp(0))
|
---|
392 | {
|
---|
393 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
|
---|
394 |
|
---|
395 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
396 | __Ai = __rootx * __K_nu
|
---|
397 | / (__numeric_constants<_Tp>::__sqrt3()
|
---|
398 | * __numeric_constants<_Tp>::__pi());
|
---|
399 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
|
---|
400 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
|
---|
401 |
|
---|
402 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
|
---|
403 | __Aip = -__x * __K_nu
|
---|
404 | / (__numeric_constants<_Tp>::__sqrt3()
|
---|
405 | * __numeric_constants<_Tp>::__pi());
|
---|
406 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
|
---|
407 | + _Tp(2) * __I_nu
|
---|
408 | / __numeric_constants<_Tp>::__sqrt3());
|
---|
409 | }
|
---|
410 | else if (__x < _Tp(0))
|
---|
411 | {
|
---|
412 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
|
---|
413 |
|
---|
414 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
415 | __Ai = __rootx * (__J_nu
|
---|
416 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
|
---|
417 | __Bi = -__rootx * (__N_nu
|
---|
418 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
|
---|
419 |
|
---|
420 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
|
---|
421 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
|
---|
422 | + __J_nu) / _Tp(2);
|
---|
423 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
|
---|
424 | - __N_nu) / _Tp(2);
|
---|
425 | }
|
---|
426 | else
|
---|
427 | {
|
---|
428 | // Reference:
|
---|
429 | // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
|
---|
430 | // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
|
---|
431 | __Ai = _Tp(0.35502805388781723926L);
|
---|
432 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
|
---|
433 |
|
---|
434 | // Reference:
|
---|
435 | // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
|
---|
436 | // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
|
---|
437 | __Aip = -_Tp(0.25881940379280679840L);
|
---|
438 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
|
---|
439 | }
|
---|
440 |
|
---|
441 | return;
|
---|
442 | }
|
---|
443 | } // namespace __detail
|
---|
444 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
445 | } // namespace tr1
|
---|
446 | #endif
|
---|
447 |
|
---|
448 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
449 | }
|
---|
450 |
|
---|
451 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
|
---|