[1166] | 1 | // Special functions -*- C++ -*-
|
---|
| 2 |
|
---|
| 3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
| 4 | //
|
---|
| 5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
| 6 | // software; you can redistribute it and/or modify it under the
|
---|
| 7 | // terms of the GNU General Public License as published by the
|
---|
| 8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
| 9 | // any later version.
|
---|
| 10 | //
|
---|
| 11 | // This library is distributed in the hope that it will be useful,
|
---|
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | // GNU General Public License for more details.
|
---|
| 15 | //
|
---|
| 16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
| 17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
| 18 | // 3.1, as published by the Free Software Foundation.
|
---|
| 19 |
|
---|
| 20 | // You should have received a copy of the GNU General Public License and
|
---|
| 21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
| 23 | // <http://www.gnu.org/licenses/>.
|
---|
| 24 |
|
---|
| 25 | /** @file tr1/riemann_zeta.tcc
|
---|
| 26 | * This is an internal header file, included by other library headers.
|
---|
| 27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | //
|
---|
| 31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
| 32 | //
|
---|
| 33 |
|
---|
| 34 | // Written by Edward Smith-Rowland based on:
|
---|
| 35 | // (1) Handbook of Mathematical Functions,
|
---|
| 36 | // Ed. by Milton Abramowitz and Irene A. Stegun,
|
---|
| 37 | // Dover Publications, New-York, Section 5, pp. 807-808.
|
---|
| 38 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
| 39 | // (3) Gamma, Exploring Euler's Constant, Julian Havil,
|
---|
| 40 | // Princeton, 2003.
|
---|
| 41 |
|
---|
| 42 | #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|
---|
| 43 | #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
|
---|
| 44 |
|
---|
| 45 | #include <tr1/special_function_util.h>
|
---|
| 46 |
|
---|
| 47 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
| 48 | {
|
---|
| 49 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
| 50 |
|
---|
| 51 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
| 52 | # define _GLIBCXX_MATH_NS ::std
|
---|
| 53 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
| 54 | namespace tr1
|
---|
| 55 | {
|
---|
| 56 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
| 57 | #else
|
---|
| 58 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
| 59 | #endif
|
---|
| 60 | // [5.2] Special functions
|
---|
| 61 |
|
---|
| 62 | // Implementation-space details.
|
---|
| 63 | namespace __detail
|
---|
| 64 | {
|
---|
| 65 | /**
|
---|
| 66 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
---|
| 67 | * by summation for s > 1.
|
---|
| 68 | *
|
---|
| 69 | * The Riemann zeta function is defined by:
|
---|
| 70 | * \f[
|
---|
| 71 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
| 72 | * \f]
|
---|
| 73 | * For s < 1 use the reflection formula:
|
---|
| 74 | * \f[
|
---|
| 75 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
| 76 | * \f]
|
---|
| 77 | */
|
---|
| 78 | template<typename _Tp>
|
---|
| 79 | _Tp
|
---|
| 80 | __riemann_zeta_sum(_Tp __s)
|
---|
| 81 | {
|
---|
| 82 | // A user shouldn't get to this.
|
---|
| 83 | if (__s < _Tp(1))
|
---|
| 84 | std::__throw_domain_error(__N("Bad argument in zeta sum."));
|
---|
| 85 |
|
---|
| 86 | const unsigned int max_iter = 10000;
|
---|
| 87 | _Tp __zeta = _Tp(0);
|
---|
| 88 | for (unsigned int __k = 1; __k < max_iter; ++__k)
|
---|
| 89 | {
|
---|
| 90 | _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
|
---|
| 91 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
| 92 | {
|
---|
| 93 | break;
|
---|
| 94 | }
|
---|
| 95 | __zeta += __term;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | return __zeta;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 |
|
---|
| 102 | /**
|
---|
| 103 | * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
|
---|
| 104 | * by an alternate series for s > 0.
|
---|
| 105 | *
|
---|
| 106 | * The Riemann zeta function is defined by:
|
---|
| 107 | * \f[
|
---|
| 108 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
| 109 | * \f]
|
---|
| 110 | * For s < 1 use the reflection formula:
|
---|
| 111 | * \f[
|
---|
| 112 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
| 113 | * \f]
|
---|
| 114 | */
|
---|
| 115 | template<typename _Tp>
|
---|
| 116 | _Tp
|
---|
| 117 | __riemann_zeta_alt(_Tp __s)
|
---|
| 118 | {
|
---|
| 119 | _Tp __sgn = _Tp(1);
|
---|
| 120 | _Tp __zeta = _Tp(0);
|
---|
| 121 | for (unsigned int __i = 1; __i < 10000000; ++__i)
|
---|
| 122 | {
|
---|
| 123 | _Tp __term = __sgn / std::pow(__i, __s);
|
---|
| 124 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
|
---|
| 125 | break;
|
---|
| 126 | __zeta += __term;
|
---|
| 127 | __sgn *= _Tp(-1);
|
---|
| 128 | }
|
---|
| 129 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
---|
| 130 |
|
---|
| 131 | return __zeta;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 |
|
---|
| 135 | /**
|
---|
| 136 | * @brief Evaluate the Riemann zeta function by series for all s != 1.
|
---|
| 137 | * Convergence is great until largish negative numbers.
|
---|
| 138 | * Then the convergence of the > 0 sum gets better.
|
---|
| 139 | *
|
---|
| 140 | * The series is:
|
---|
| 141 | * \f[
|
---|
| 142 | * \zeta(s) = \frac{1}{1-2^{1-s}}
|
---|
| 143 | * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
|
---|
| 144 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
|
---|
| 145 | * \f]
|
---|
| 146 | * Havil 2003, p. 206.
|
---|
| 147 | *
|
---|
| 148 | * The Riemann zeta function is defined by:
|
---|
| 149 | * \f[
|
---|
| 150 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
| 151 | * \f]
|
---|
| 152 | * For s < 1 use the reflection formula:
|
---|
| 153 | * \f[
|
---|
| 154 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
| 155 | * \f]
|
---|
| 156 | */
|
---|
| 157 | template<typename _Tp>
|
---|
| 158 | _Tp
|
---|
| 159 | __riemann_zeta_glob(_Tp __s)
|
---|
| 160 | {
|
---|
| 161 | _Tp __zeta = _Tp(0);
|
---|
| 162 |
|
---|
| 163 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 164 | // Max e exponent before overflow.
|
---|
| 165 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
---|
| 166 | * std::log(_Tp(10)) - _Tp(1);
|
---|
| 167 |
|
---|
| 168 | // This series works until the binomial coefficient blows up
|
---|
| 169 | // so use reflection.
|
---|
| 170 | if (__s < _Tp(0))
|
---|
| 171 | {
|
---|
| 172 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 173 | if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0))
|
---|
| 174 | return _Tp(0);
|
---|
| 175 | else
|
---|
| 176 | #endif
|
---|
| 177 | {
|
---|
| 178 | _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
|
---|
| 179 | __zeta *= std::pow(_Tp(2)
|
---|
| 180 | * __numeric_constants<_Tp>::__pi(), __s)
|
---|
| 181 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
| 182 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 183 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
|
---|
| 184 | #else
|
---|
| 185 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
| 186 | #endif
|
---|
| 187 | / __numeric_constants<_Tp>::__pi();
|
---|
| 188 | return __zeta;
|
---|
| 189 | }
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | _Tp __num = _Tp(0.5L);
|
---|
| 193 | const unsigned int __maxit = 10000;
|
---|
| 194 | for (unsigned int __i = 0; __i < __maxit; ++__i)
|
---|
| 195 | {
|
---|
| 196 | bool __punt = false;
|
---|
| 197 | _Tp __sgn = _Tp(1);
|
---|
| 198 | _Tp __term = _Tp(0);
|
---|
| 199 | for (unsigned int __j = 0; __j <= __i; ++__j)
|
---|
| 200 | {
|
---|
| 201 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 202 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
|
---|
| 203 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
|
---|
| 204 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
|
---|
| 205 | #else
|
---|
| 206 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
---|
| 207 | - __log_gamma(_Tp(1 + __j))
|
---|
| 208 | - __log_gamma(_Tp(1 + __i - __j));
|
---|
| 209 | #endif
|
---|
| 210 | if (__bincoeff > __max_bincoeff)
|
---|
| 211 | {
|
---|
| 212 | // This only gets hit for x << 0.
|
---|
| 213 | __punt = true;
|
---|
| 214 | break;
|
---|
| 215 | }
|
---|
| 216 | __bincoeff = std::exp(__bincoeff);
|
---|
| 217 | __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
|
---|
| 218 | __sgn *= _Tp(-1);
|
---|
| 219 | }
|
---|
| 220 | if (__punt)
|
---|
| 221 | break;
|
---|
| 222 | __term *= __num;
|
---|
| 223 | __zeta += __term;
|
---|
| 224 | if (std::abs(__term/__zeta) < __eps)
|
---|
| 225 | break;
|
---|
| 226 | __num *= _Tp(0.5L);
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
---|
| 230 |
|
---|
| 231 | return __zeta;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 |
|
---|
| 235 | /**
|
---|
| 236 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
---|
| 237 | * using the product over prime factors.
|
---|
| 238 | * \f[
|
---|
| 239 | * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
|
---|
| 240 | * \f]
|
---|
| 241 | * where @f$ {p_i} @f$ are the prime numbers.
|
---|
| 242 | *
|
---|
| 243 | * The Riemann zeta function is defined by:
|
---|
| 244 | * \f[
|
---|
| 245 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
| 246 | * \f]
|
---|
| 247 | * For s < 1 use the reflection formula:
|
---|
| 248 | * \f[
|
---|
| 249 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
| 250 | * \f]
|
---|
| 251 | */
|
---|
| 252 | template<typename _Tp>
|
---|
| 253 | _Tp
|
---|
| 254 | __riemann_zeta_product(_Tp __s)
|
---|
| 255 | {
|
---|
| 256 | static const _Tp __prime[] = {
|
---|
| 257 | _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
|
---|
| 258 | _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
|
---|
| 259 | _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
|
---|
| 260 | _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
|
---|
| 261 | };
|
---|
| 262 | static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
|
---|
| 263 |
|
---|
| 264 | _Tp __zeta = _Tp(1);
|
---|
| 265 | for (unsigned int __i = 0; __i < __num_primes; ++__i)
|
---|
| 266 | {
|
---|
| 267 | const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
|
---|
| 268 | __zeta *= __fact;
|
---|
| 269 | if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
|
---|
| 270 | break;
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | __zeta = _Tp(1) / __zeta;
|
---|
| 274 |
|
---|
| 275 | return __zeta;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 |
|
---|
| 279 | /**
|
---|
| 280 | * @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
|
---|
| 281 | *
|
---|
| 282 | * The Riemann zeta function is defined by:
|
---|
| 283 | * \f[
|
---|
| 284 | * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
|
---|
| 285 | * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
|
---|
| 286 | * \Gamma (1 - s) \zeta (1 - s) for s < 1
|
---|
| 287 | * \f]
|
---|
| 288 | * For s < 1 use the reflection formula:
|
---|
| 289 | * \f[
|
---|
| 290 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
| 291 | * \f]
|
---|
| 292 | */
|
---|
| 293 | template<typename _Tp>
|
---|
| 294 | _Tp
|
---|
| 295 | __riemann_zeta(_Tp __s)
|
---|
| 296 | {
|
---|
| 297 | if (__isnan(__s))
|
---|
| 298 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
| 299 | else if (__s == _Tp(1))
|
---|
| 300 | return std::numeric_limits<_Tp>::infinity();
|
---|
| 301 | else if (__s < -_Tp(19))
|
---|
| 302 | {
|
---|
| 303 | _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
|
---|
| 304 | __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
|
---|
| 305 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
| 306 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 307 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
|
---|
| 308 | #else
|
---|
| 309 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
| 310 | #endif
|
---|
| 311 | / __numeric_constants<_Tp>::__pi();
|
---|
| 312 | return __zeta;
|
---|
| 313 | }
|
---|
| 314 | else if (__s < _Tp(20))
|
---|
| 315 | {
|
---|
| 316 | // Global double sum or McLaurin?
|
---|
| 317 | bool __glob = true;
|
---|
| 318 | if (__glob)
|
---|
| 319 | return __riemann_zeta_glob(__s);
|
---|
| 320 | else
|
---|
| 321 | {
|
---|
| 322 | if (__s > _Tp(1))
|
---|
| 323 | return __riemann_zeta_sum(__s);
|
---|
| 324 | else
|
---|
| 325 | {
|
---|
| 326 | _Tp __zeta = std::pow(_Tp(2)
|
---|
| 327 | * __numeric_constants<_Tp>::__pi(), __s)
|
---|
| 328 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
| 329 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 330 | * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s)
|
---|
| 331 | #else
|
---|
| 332 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
| 333 | #endif
|
---|
| 334 | * __riemann_zeta_sum(_Tp(1) - __s);
|
---|
| 335 | return __zeta;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 | else
|
---|
| 340 | return __riemann_zeta_product(__s);
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 |
|
---|
| 344 | /**
|
---|
| 345 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
---|
| 346 | * for all s != 1 and x > -1.
|
---|
| 347 | *
|
---|
| 348 | * The Hurwitz zeta function is defined by:
|
---|
| 349 | * @f[
|
---|
| 350 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
---|
| 351 | * @f]
|
---|
| 352 | * The Riemann zeta function is a special case:
|
---|
| 353 | * @f[
|
---|
| 354 | * \zeta(s) = \zeta(1,s)
|
---|
| 355 | * @f]
|
---|
| 356 | *
|
---|
| 357 | * This functions uses the double sum that converges for s != 1
|
---|
| 358 | * and x > -1:
|
---|
| 359 | * @f[
|
---|
| 360 | * \zeta(x,s) = \frac{1}{s-1}
|
---|
| 361 | * \sum_{n=0}^{\infty} \frac{1}{n + 1}
|
---|
| 362 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
|
---|
| 363 | * @f]
|
---|
| 364 | */
|
---|
| 365 | template<typename _Tp>
|
---|
| 366 | _Tp
|
---|
| 367 | __hurwitz_zeta_glob(_Tp __a, _Tp __s)
|
---|
| 368 | {
|
---|
| 369 | _Tp __zeta = _Tp(0);
|
---|
| 370 |
|
---|
| 371 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
| 372 | // Max e exponent before overflow.
|
---|
| 373 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
---|
| 374 | * std::log(_Tp(10)) - _Tp(1);
|
---|
| 375 |
|
---|
| 376 | const unsigned int __maxit = 10000;
|
---|
| 377 | for (unsigned int __i = 0; __i < __maxit; ++__i)
|
---|
| 378 | {
|
---|
| 379 | bool __punt = false;
|
---|
| 380 | _Tp __sgn = _Tp(1);
|
---|
| 381 | _Tp __term = _Tp(0);
|
---|
| 382 | for (unsigned int __j = 0; __j <= __i; ++__j)
|
---|
| 383 | {
|
---|
| 384 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
| 385 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
|
---|
| 386 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
|
---|
| 387 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
|
---|
| 388 | #else
|
---|
| 389 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
---|
| 390 | - __log_gamma(_Tp(1 + __j))
|
---|
| 391 | - __log_gamma(_Tp(1 + __i - __j));
|
---|
| 392 | #endif
|
---|
| 393 | if (__bincoeff > __max_bincoeff)
|
---|
| 394 | {
|
---|
| 395 | // This only gets hit for x << 0.
|
---|
| 396 | __punt = true;
|
---|
| 397 | break;
|
---|
| 398 | }
|
---|
| 399 | __bincoeff = std::exp(__bincoeff);
|
---|
| 400 | __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
|
---|
| 401 | __sgn *= _Tp(-1);
|
---|
| 402 | }
|
---|
| 403 | if (__punt)
|
---|
| 404 | break;
|
---|
| 405 | __term /= _Tp(__i + 1);
|
---|
| 406 | if (std::abs(__term / __zeta) < __eps)
|
---|
| 407 | break;
|
---|
| 408 | __zeta += __term;
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | __zeta /= __s - _Tp(1);
|
---|
| 412 |
|
---|
| 413 | return __zeta;
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 |
|
---|
| 417 | /**
|
---|
| 418 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
---|
| 419 | * for all s != 1 and x > -1.
|
---|
| 420 | *
|
---|
| 421 | * The Hurwitz zeta function is defined by:
|
---|
| 422 | * @f[
|
---|
| 423 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
---|
| 424 | * @f]
|
---|
| 425 | * The Riemann zeta function is a special case:
|
---|
| 426 | * @f[
|
---|
| 427 | * \zeta(s) = \zeta(1,s)
|
---|
| 428 | * @f]
|
---|
| 429 | */
|
---|
| 430 | template<typename _Tp>
|
---|
| 431 | inline _Tp
|
---|
| 432 | __hurwitz_zeta(_Tp __a, _Tp __s)
|
---|
| 433 | { return __hurwitz_zeta_glob(__a, __s); }
|
---|
| 434 | } // namespace __detail
|
---|
| 435 | #undef _GLIBCXX_MATH_NS
|
---|
| 436 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
| 437 | } // namespace tr1
|
---|
| 438 | #endif
|
---|
| 439 |
|
---|
| 440 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|
---|