1 | // Special functions -*- C++ -*-
|
---|
2 |
|
---|
3 | // Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
---|
4 | //
|
---|
5 | // This file is part of the GNU ISO C++ Library. This library is free
|
---|
6 | // software; you can redistribute it and/or modify it under the
|
---|
7 | // terms of the GNU General Public License as published by the
|
---|
8 | // Free Software Foundation; either version 3, or (at your option)
|
---|
9 | // any later version.
|
---|
10 | //
|
---|
11 | // This library is distributed in the hope that it will be useful,
|
---|
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | // GNU General Public License for more details.
|
---|
15 | //
|
---|
16 | // Under Section 7 of GPL version 3, you are granted additional
|
---|
17 | // permissions described in the GCC Runtime Library Exception, version
|
---|
18 | // 3.1, as published by the Free Software Foundation.
|
---|
19 |
|
---|
20 | // You should have received a copy of the GNU General Public License and
|
---|
21 | // a copy of the GCC Runtime Library Exception along with this program;
|
---|
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
---|
23 | // <http://www.gnu.org/licenses/>.
|
---|
24 |
|
---|
25 | /** @file tr1/riemann_zeta.tcc
|
---|
26 | * This is an internal header file, included by other library headers.
|
---|
27 | * Do not attempt to use it directly. @headername{tr1/cmath}
|
---|
28 | */
|
---|
29 |
|
---|
30 | //
|
---|
31 | // ISO C++ 14882 TR1: 5.2 Special functions
|
---|
32 | //
|
---|
33 |
|
---|
34 | // Written by Edward Smith-Rowland based on:
|
---|
35 | // (1) Handbook of Mathematical Functions,
|
---|
36 | // Ed. by Milton Abramowitz and Irene A. Stegun,
|
---|
37 | // Dover Publications, New-York, Section 5, pp. 807-808.
|
---|
38 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
---|
39 | // (3) Gamma, Exploring Euler's Constant, Julian Havil,
|
---|
40 | // Princeton, 2003.
|
---|
41 |
|
---|
42 | #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|
---|
43 | #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
|
---|
44 |
|
---|
45 | #include <tr1/special_function_util.h>
|
---|
46 |
|
---|
47 | namespace std _GLIBCXX_VISIBILITY(default)
|
---|
48 | {
|
---|
49 | _GLIBCXX_BEGIN_NAMESPACE_VERSION
|
---|
50 |
|
---|
51 | #if _GLIBCXX_USE_STD_SPEC_FUNCS
|
---|
52 | # define _GLIBCXX_MATH_NS ::std
|
---|
53 | #elif defined(_GLIBCXX_TR1_CMATH)
|
---|
54 | namespace tr1
|
---|
55 | {
|
---|
56 | # define _GLIBCXX_MATH_NS ::std::tr1
|
---|
57 | #else
|
---|
58 | # error do not include this header directly, use <cmath> or <tr1/cmath>
|
---|
59 | #endif
|
---|
60 | // [5.2] Special functions
|
---|
61 |
|
---|
62 | // Implementation-space details.
|
---|
63 | namespace __detail
|
---|
64 | {
|
---|
65 | /**
|
---|
66 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
---|
67 | * by summation for s > 1.
|
---|
68 | *
|
---|
69 | * The Riemann zeta function is defined by:
|
---|
70 | * \f[
|
---|
71 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
72 | * \f]
|
---|
73 | * For s < 1 use the reflection formula:
|
---|
74 | * \f[
|
---|
75 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
76 | * \f]
|
---|
77 | */
|
---|
78 | template<typename _Tp>
|
---|
79 | _Tp
|
---|
80 | __riemann_zeta_sum(_Tp __s)
|
---|
81 | {
|
---|
82 | // A user shouldn't get to this.
|
---|
83 | if (__s < _Tp(1))
|
---|
84 | std::__throw_domain_error(__N("Bad argument in zeta sum."));
|
---|
85 |
|
---|
86 | const unsigned int max_iter = 10000;
|
---|
87 | _Tp __zeta = _Tp(0);
|
---|
88 | for (unsigned int __k = 1; __k < max_iter; ++__k)
|
---|
89 | {
|
---|
90 | _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
|
---|
91 | if (__term < std::numeric_limits<_Tp>::epsilon())
|
---|
92 | {
|
---|
93 | break;
|
---|
94 | }
|
---|
95 | __zeta += __term;
|
---|
96 | }
|
---|
97 |
|
---|
98 | return __zeta;
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | /**
|
---|
103 | * @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
|
---|
104 | * by an alternate series for s > 0.
|
---|
105 | *
|
---|
106 | * The Riemann zeta function is defined by:
|
---|
107 | * \f[
|
---|
108 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
109 | * \f]
|
---|
110 | * For s < 1 use the reflection formula:
|
---|
111 | * \f[
|
---|
112 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
113 | * \f]
|
---|
114 | */
|
---|
115 | template<typename _Tp>
|
---|
116 | _Tp
|
---|
117 | __riemann_zeta_alt(_Tp __s)
|
---|
118 | {
|
---|
119 | _Tp __sgn = _Tp(1);
|
---|
120 | _Tp __zeta = _Tp(0);
|
---|
121 | for (unsigned int __i = 1; __i < 10000000; ++__i)
|
---|
122 | {
|
---|
123 | _Tp __term = __sgn / std::pow(__i, __s);
|
---|
124 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
|
---|
125 | break;
|
---|
126 | __zeta += __term;
|
---|
127 | __sgn *= _Tp(-1);
|
---|
128 | }
|
---|
129 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
---|
130 |
|
---|
131 | return __zeta;
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * @brief Evaluate the Riemann zeta function by series for all s != 1.
|
---|
137 | * Convergence is great until largish negative numbers.
|
---|
138 | * Then the convergence of the > 0 sum gets better.
|
---|
139 | *
|
---|
140 | * The series is:
|
---|
141 | * \f[
|
---|
142 | * \zeta(s) = \frac{1}{1-2^{1-s}}
|
---|
143 | * \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
|
---|
144 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
|
---|
145 | * \f]
|
---|
146 | * Havil 2003, p. 206.
|
---|
147 | *
|
---|
148 | * The Riemann zeta function is defined by:
|
---|
149 | * \f[
|
---|
150 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
151 | * \f]
|
---|
152 | * For s < 1 use the reflection formula:
|
---|
153 | * \f[
|
---|
154 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
155 | * \f]
|
---|
156 | */
|
---|
157 | template<typename _Tp>
|
---|
158 | _Tp
|
---|
159 | __riemann_zeta_glob(_Tp __s)
|
---|
160 | {
|
---|
161 | _Tp __zeta = _Tp(0);
|
---|
162 |
|
---|
163 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
164 | // Max e exponent before overflow.
|
---|
165 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
---|
166 | * std::log(_Tp(10)) - _Tp(1);
|
---|
167 |
|
---|
168 | // This series works until the binomial coefficient blows up
|
---|
169 | // so use reflection.
|
---|
170 | if (__s < _Tp(0))
|
---|
171 | {
|
---|
172 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
173 | if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0))
|
---|
174 | return _Tp(0);
|
---|
175 | else
|
---|
176 | #endif
|
---|
177 | {
|
---|
178 | _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
|
---|
179 | __zeta *= std::pow(_Tp(2)
|
---|
180 | * __numeric_constants<_Tp>::__pi(), __s)
|
---|
181 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
182 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
183 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
|
---|
184 | #else
|
---|
185 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
186 | #endif
|
---|
187 | / __numeric_constants<_Tp>::__pi();
|
---|
188 | return __zeta;
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | _Tp __num = _Tp(0.5L);
|
---|
193 | const unsigned int __maxit = 10000;
|
---|
194 | for (unsigned int __i = 0; __i < __maxit; ++__i)
|
---|
195 | {
|
---|
196 | bool __punt = false;
|
---|
197 | _Tp __sgn = _Tp(1);
|
---|
198 | _Tp __term = _Tp(0);
|
---|
199 | for (unsigned int __j = 0; __j <= __i; ++__j)
|
---|
200 | {
|
---|
201 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
202 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
|
---|
203 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
|
---|
204 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
|
---|
205 | #else
|
---|
206 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
---|
207 | - __log_gamma(_Tp(1 + __j))
|
---|
208 | - __log_gamma(_Tp(1 + __i - __j));
|
---|
209 | #endif
|
---|
210 | if (__bincoeff > __max_bincoeff)
|
---|
211 | {
|
---|
212 | // This only gets hit for x << 0.
|
---|
213 | __punt = true;
|
---|
214 | break;
|
---|
215 | }
|
---|
216 | __bincoeff = std::exp(__bincoeff);
|
---|
217 | __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
|
---|
218 | __sgn *= _Tp(-1);
|
---|
219 | }
|
---|
220 | if (__punt)
|
---|
221 | break;
|
---|
222 | __term *= __num;
|
---|
223 | __zeta += __term;
|
---|
224 | if (std::abs(__term/__zeta) < __eps)
|
---|
225 | break;
|
---|
226 | __num *= _Tp(0.5L);
|
---|
227 | }
|
---|
228 |
|
---|
229 | __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
---|
230 |
|
---|
231 | return __zeta;
|
---|
232 | }
|
---|
233 |
|
---|
234 |
|
---|
235 | /**
|
---|
236 | * @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
---|
237 | * using the product over prime factors.
|
---|
238 | * \f[
|
---|
239 | * \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
|
---|
240 | * \f]
|
---|
241 | * where @f$ {p_i} @f$ are the prime numbers.
|
---|
242 | *
|
---|
243 | * The Riemann zeta function is defined by:
|
---|
244 | * \f[
|
---|
245 | * \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
---|
246 | * \f]
|
---|
247 | * For s < 1 use the reflection formula:
|
---|
248 | * \f[
|
---|
249 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
250 | * \f]
|
---|
251 | */
|
---|
252 | template<typename _Tp>
|
---|
253 | _Tp
|
---|
254 | __riemann_zeta_product(_Tp __s)
|
---|
255 | {
|
---|
256 | static const _Tp __prime[] = {
|
---|
257 | _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
|
---|
258 | _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
|
---|
259 | _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
|
---|
260 | _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
|
---|
261 | };
|
---|
262 | static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
|
---|
263 |
|
---|
264 | _Tp __zeta = _Tp(1);
|
---|
265 | for (unsigned int __i = 0; __i < __num_primes; ++__i)
|
---|
266 | {
|
---|
267 | const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
|
---|
268 | __zeta *= __fact;
|
---|
269 | if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
|
---|
270 | break;
|
---|
271 | }
|
---|
272 |
|
---|
273 | __zeta = _Tp(1) / __zeta;
|
---|
274 |
|
---|
275 | return __zeta;
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | /**
|
---|
280 | * @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
|
---|
281 | *
|
---|
282 | * The Riemann zeta function is defined by:
|
---|
283 | * \f[
|
---|
284 | * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
|
---|
285 | * \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
|
---|
286 | * \Gamma (1 - s) \zeta (1 - s) for s < 1
|
---|
287 | * \f]
|
---|
288 | * For s < 1 use the reflection formula:
|
---|
289 | * \f[
|
---|
290 | * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
---|
291 | * \f]
|
---|
292 | */
|
---|
293 | template<typename _Tp>
|
---|
294 | _Tp
|
---|
295 | __riemann_zeta(_Tp __s)
|
---|
296 | {
|
---|
297 | if (__isnan(__s))
|
---|
298 | return std::numeric_limits<_Tp>::quiet_NaN();
|
---|
299 | else if (__s == _Tp(1))
|
---|
300 | return std::numeric_limits<_Tp>::infinity();
|
---|
301 | else if (__s < -_Tp(19))
|
---|
302 | {
|
---|
303 | _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
|
---|
304 | __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
|
---|
305 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
306 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
307 | * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
|
---|
308 | #else
|
---|
309 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
310 | #endif
|
---|
311 | / __numeric_constants<_Tp>::__pi();
|
---|
312 | return __zeta;
|
---|
313 | }
|
---|
314 | else if (__s < _Tp(20))
|
---|
315 | {
|
---|
316 | // Global double sum or McLaurin?
|
---|
317 | bool __glob = true;
|
---|
318 | if (__glob)
|
---|
319 | return __riemann_zeta_glob(__s);
|
---|
320 | else
|
---|
321 | {
|
---|
322 | if (__s > _Tp(1))
|
---|
323 | return __riemann_zeta_sum(__s);
|
---|
324 | else
|
---|
325 | {
|
---|
326 | _Tp __zeta = std::pow(_Tp(2)
|
---|
327 | * __numeric_constants<_Tp>::__pi(), __s)
|
---|
328 | * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
---|
329 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
330 | * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s)
|
---|
331 | #else
|
---|
332 | * std::exp(__log_gamma(_Tp(1) - __s))
|
---|
333 | #endif
|
---|
334 | * __riemann_zeta_sum(_Tp(1) - __s);
|
---|
335 | return __zeta;
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 | else
|
---|
340 | return __riemann_zeta_product(__s);
|
---|
341 | }
|
---|
342 |
|
---|
343 |
|
---|
344 | /**
|
---|
345 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
---|
346 | * for all s != 1 and x > -1.
|
---|
347 | *
|
---|
348 | * The Hurwitz zeta function is defined by:
|
---|
349 | * @f[
|
---|
350 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
---|
351 | * @f]
|
---|
352 | * The Riemann zeta function is a special case:
|
---|
353 | * @f[
|
---|
354 | * \zeta(s) = \zeta(1,s)
|
---|
355 | * @f]
|
---|
356 | *
|
---|
357 | * This functions uses the double sum that converges for s != 1
|
---|
358 | * and x > -1:
|
---|
359 | * @f[
|
---|
360 | * \zeta(x,s) = \frac{1}{s-1}
|
---|
361 | * \sum_{n=0}^{\infty} \frac{1}{n + 1}
|
---|
362 | * \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
|
---|
363 | * @f]
|
---|
364 | */
|
---|
365 | template<typename _Tp>
|
---|
366 | _Tp
|
---|
367 | __hurwitz_zeta_glob(_Tp __a, _Tp __s)
|
---|
368 | {
|
---|
369 | _Tp __zeta = _Tp(0);
|
---|
370 |
|
---|
371 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
---|
372 | // Max e exponent before overflow.
|
---|
373 | const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
---|
374 | * std::log(_Tp(10)) - _Tp(1);
|
---|
375 |
|
---|
376 | const unsigned int __maxit = 10000;
|
---|
377 | for (unsigned int __i = 0; __i < __maxit; ++__i)
|
---|
378 | {
|
---|
379 | bool __punt = false;
|
---|
380 | _Tp __sgn = _Tp(1);
|
---|
381 | _Tp __term = _Tp(0);
|
---|
382 | for (unsigned int __j = 0; __j <= __i; ++__j)
|
---|
383 | {
|
---|
384 | #if _GLIBCXX_USE_C99_MATH_TR1
|
---|
385 | _Tp __bincoeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
|
---|
386 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
|
---|
387 | - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
|
---|
388 | #else
|
---|
389 | _Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
---|
390 | - __log_gamma(_Tp(1 + __j))
|
---|
391 | - __log_gamma(_Tp(1 + __i - __j));
|
---|
392 | #endif
|
---|
393 | if (__bincoeff > __max_bincoeff)
|
---|
394 | {
|
---|
395 | // This only gets hit for x << 0.
|
---|
396 | __punt = true;
|
---|
397 | break;
|
---|
398 | }
|
---|
399 | __bincoeff = std::exp(__bincoeff);
|
---|
400 | __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
|
---|
401 | __sgn *= _Tp(-1);
|
---|
402 | }
|
---|
403 | if (__punt)
|
---|
404 | break;
|
---|
405 | __term /= _Tp(__i + 1);
|
---|
406 | if (std::abs(__term / __zeta) < __eps)
|
---|
407 | break;
|
---|
408 | __zeta += __term;
|
---|
409 | }
|
---|
410 |
|
---|
411 | __zeta /= __s - _Tp(1);
|
---|
412 |
|
---|
413 | return __zeta;
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | /**
|
---|
418 | * @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
---|
419 | * for all s != 1 and x > -1.
|
---|
420 | *
|
---|
421 | * The Hurwitz zeta function is defined by:
|
---|
422 | * @f[
|
---|
423 | * \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
---|
424 | * @f]
|
---|
425 | * The Riemann zeta function is a special case:
|
---|
426 | * @f[
|
---|
427 | * \zeta(s) = \zeta(1,s)
|
---|
428 | * @f]
|
---|
429 | */
|
---|
430 | template<typename _Tp>
|
---|
431 | inline _Tp
|
---|
432 | __hurwitz_zeta(_Tp __a, _Tp __s)
|
---|
433 | { return __hurwitz_zeta_glob(__a, __s); }
|
---|
434 | } // namespace __detail
|
---|
435 | #undef _GLIBCXX_MATH_NS
|
---|
436 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
---|
437 | } // namespace tr1
|
---|
438 | #endif
|
---|
439 |
|
---|
440 | _GLIBCXX_END_NAMESPACE_VERSION
|
---|
441 | }
|
---|
442 |
|
---|
443 | #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|
---|