1 | /* Test of the double rounding effect.
|
---|
2 | *
|
---|
3 | * This example was presented at the CNC'2 summer school on MPFR and MPC
|
---|
4 | * at LORIA, Nancy, France.
|
---|
5 | *
|
---|
6 | * Arguments: max difference of exponents dmax, significand size n.
|
---|
7 | * Optional argument: extended precision p (with double rounding).
|
---|
8 | *
|
---|
9 | * Return all the couples of positive machine numbers (x,y) such that
|
---|
10 | * 1/2 <= y < 1, 0 <= Ex - Ey <= dmax, x - y is exactly representable
|
---|
11 | * in precision n and the results of floor(x/y) in the rounding modes
|
---|
12 | * toward 0 and to nearest are different.
|
---|
13 | */
|
---|
14 |
|
---|
15 | /*
|
---|
16 | Copyright 2009-2020 Free Software Foundation, Inc.
|
---|
17 | Contributed by the AriC and Caramba projects, INRIA.
|
---|
18 |
|
---|
19 | This file is part of the GNU MPFR Library.
|
---|
20 |
|
---|
21 | The GNU MPFR Library is free software; you can redistribute it and/or modify
|
---|
22 | it under the terms of the GNU Lesser General Public License as published by
|
---|
23 | the Free Software Foundation; either version 3 of the License, or (at your
|
---|
24 | option) any later version.
|
---|
25 |
|
---|
26 | The GNU MPFR Library is distributed in the hope that it will be useful, but
|
---|
27 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
28 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
---|
29 | License for more details.
|
---|
30 |
|
---|
31 | You should have received a copy of the GNU Lesser General Public License
|
---|
32 | along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
---|
33 | https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
---|
34 | 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
---|
35 | */
|
---|
36 |
|
---|
37 | #include <stdio.h>
|
---|
38 | #include <stdlib.h>
|
---|
39 | #include <mpfr.h>
|
---|
40 |
|
---|
41 | #define PRECN x, y, z
|
---|
42 | #define VARS PRECN, t
|
---|
43 |
|
---|
44 | static unsigned long
|
---|
45 | eval (mpfr_t x, mpfr_t y, mpfr_t z, mpfr_t t, mpfr_rnd_t rnd)
|
---|
46 | {
|
---|
47 | mpfr_div (t, x, y, rnd); /* the division x/y in precision p */
|
---|
48 | mpfr_set (z, t, rnd); /* the rounding to the precision n */
|
---|
49 | mpfr_rint_floor (z, z, rnd);
|
---|
50 | return mpfr_get_ui (z, rnd);
|
---|
51 | }
|
---|
52 |
|
---|
53 | int main (int argc, char *argv[])
|
---|
54 | {
|
---|
55 | int dmax, n, p;
|
---|
56 | mpfr_t VARS;
|
---|
57 |
|
---|
58 | if (argc != 3 && argc != 4)
|
---|
59 | {
|
---|
60 | fprintf (stderr, "Usage: divworst <dmax> <n> [ <p> ]\n");
|
---|
61 | exit (EXIT_FAILURE);
|
---|
62 | }
|
---|
63 |
|
---|
64 | dmax = atoi (argv[1]);
|
---|
65 | n = atoi (argv[2]);
|
---|
66 | p = argc == 3 ? n : atoi (argv[3]);
|
---|
67 | if (p < n)
|
---|
68 | {
|
---|
69 | fprintf (stderr, "divworst: p must be greater or equal to n\n");
|
---|
70 | exit (EXIT_FAILURE);
|
---|
71 | }
|
---|
72 |
|
---|
73 | mpfr_inits2 (n, PRECN, (mpfr_ptr) 0);
|
---|
74 | mpfr_init2 (t, p);
|
---|
75 |
|
---|
76 | for (mpfr_set_ui_2exp (x, 1, -1, MPFR_RNDN);
|
---|
77 | mpfr_get_exp (x) <= dmax;
|
---|
78 | mpfr_nextabove (x))
|
---|
79 | for (mpfr_set_ui_2exp (y, 1, -1, MPFR_RNDN);
|
---|
80 | mpfr_get_exp (y) == 0;
|
---|
81 | mpfr_nextabove (y))
|
---|
82 | {
|
---|
83 | unsigned long rz, rn;
|
---|
84 |
|
---|
85 | if (mpfr_sub (z, x, y, MPFR_RNDZ) != 0)
|
---|
86 | continue; /* x - y is not representable in precision n */
|
---|
87 | rz = eval (x, y, z, t, MPFR_RNDZ);
|
---|
88 | rn = eval (x, y, z, t, MPFR_RNDN);
|
---|
89 | if (rz == rn)
|
---|
90 | continue;
|
---|
91 | mpfr_printf ("x = %.*Rb ; y = %.*Rb ; Z: %lu ; N: %lu\n",
|
---|
92 | n - 1, x, n - 1, y, rz, rn);
|
---|
93 | }
|
---|
94 |
|
---|
95 | mpfr_clears (VARS, (mpfr_ptr) 0);
|
---|
96 | mpfr_free_cache ();
|
---|
97 | return 0;
|
---|
98 | }
|
---|