source: Daodan/MinGW/lib/gcc/mingw32/5.3.0/include/xmmintrin.h@ 1054

Last change on this file since 1054 was 1046, checked in by alloc, 8 years ago

Daodan: Added Windows MinGW and build batch file

File size: 41.1 KB
RevLine 
[1046]1/* Copyright (C) 2002-2015 Free Software Foundation, Inc.
2
3 This file is part of GCC.
4
5 GCC is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3, or (at your option)
8 any later version.
9
10 GCC is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
18
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22 <http://www.gnu.org/licenses/>. */
23
24/* Implemented from the specification included in the Intel C++ Compiler
25 User Guide and Reference, version 9.0. */
26
27#ifndef _XMMINTRIN_H_INCLUDED
28#define _XMMINTRIN_H_INCLUDED
29
30/* We need type definitions from the MMX header file. */
31#include <mmintrin.h>
32
33/* Get _mm_malloc () and _mm_free (). */
34#include <mm_malloc.h>
35
36/* Constants for use with _mm_prefetch. */
37enum _mm_hint
38{
39 /* _MM_HINT_ET is _MM_HINT_T with set 3rd bit. */
40 _MM_HINT_ET0 = 7,
41 _MM_HINT_ET1 = 6,
42 _MM_HINT_T0 = 3,
43 _MM_HINT_T1 = 2,
44 _MM_HINT_T2 = 1,
45 _MM_HINT_NTA = 0
46};
47
48/* Loads one cache line from address P to a location "closer" to the
49 processor. The selector I specifies the type of prefetch operation. */
50#ifdef __OPTIMIZE__
51extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
52_mm_prefetch (const void *__P, enum _mm_hint __I)
53{
54 __builtin_prefetch (__P, (__I & 0x4) >> 2, __I & 0x3);
55}
56#else
57#define _mm_prefetch(P, I) \
58 __builtin_prefetch ((P), ((I & 0x4) >> 2), (I & 0x3))
59#endif
60
61#ifndef __SSE__
62#pragma GCC push_options
63#pragma GCC target("sse")
64#define __DISABLE_SSE__
65#endif /* __SSE__ */
66
67/* The Intel API is flexible enough that we must allow aliasing with other
68 vector types, and their scalar components. */
69typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__));
70
71/* Internal data types for implementing the intrinsics. */
72typedef float __v4sf __attribute__ ((__vector_size__ (16)));
73
74/* Create a selector for use with the SHUFPS instruction. */
75#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \
76 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0))
77
78/* Bits in the MXCSR. */
79#define _MM_EXCEPT_MASK 0x003f
80#define _MM_EXCEPT_INVALID 0x0001
81#define _MM_EXCEPT_DENORM 0x0002
82#define _MM_EXCEPT_DIV_ZERO 0x0004
83#define _MM_EXCEPT_OVERFLOW 0x0008
84#define _MM_EXCEPT_UNDERFLOW 0x0010
85#define _MM_EXCEPT_INEXACT 0x0020
86
87#define _MM_MASK_MASK 0x1f80
88#define _MM_MASK_INVALID 0x0080
89#define _MM_MASK_DENORM 0x0100
90#define _MM_MASK_DIV_ZERO 0x0200
91#define _MM_MASK_OVERFLOW 0x0400
92#define _MM_MASK_UNDERFLOW 0x0800
93#define _MM_MASK_INEXACT 0x1000
94
95#define _MM_ROUND_MASK 0x6000
96#define _MM_ROUND_NEAREST 0x0000
97#define _MM_ROUND_DOWN 0x2000
98#define _MM_ROUND_UP 0x4000
99#define _MM_ROUND_TOWARD_ZERO 0x6000
100
101#define _MM_FLUSH_ZERO_MASK 0x8000
102#define _MM_FLUSH_ZERO_ON 0x8000
103#define _MM_FLUSH_ZERO_OFF 0x0000
104
105/* Create an undefined vector. */
106extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
107_mm_undefined_ps (void)
108{
109 __m128 __Y = __Y;
110 return __Y;
111}
112
113/* Create a vector of zeros. */
114extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
115_mm_setzero_ps (void)
116{
117 return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f };
118}
119
120/* Perform the respective operation on the lower SPFP (single-precision
121 floating-point) values of A and B; the upper three SPFP values are
122 passed through from A. */
123
124extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
125_mm_add_ss (__m128 __A, __m128 __B)
126{
127 return (__m128) __builtin_ia32_addss ((__v4sf)__A, (__v4sf)__B);
128}
129
130extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
131_mm_sub_ss (__m128 __A, __m128 __B)
132{
133 return (__m128) __builtin_ia32_subss ((__v4sf)__A, (__v4sf)__B);
134}
135
136extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
137_mm_mul_ss (__m128 __A, __m128 __B)
138{
139 return (__m128) __builtin_ia32_mulss ((__v4sf)__A, (__v4sf)__B);
140}
141
142extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
143_mm_div_ss (__m128 __A, __m128 __B)
144{
145 return (__m128) __builtin_ia32_divss ((__v4sf)__A, (__v4sf)__B);
146}
147
148extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
149_mm_sqrt_ss (__m128 __A)
150{
151 return (__m128) __builtin_ia32_sqrtss ((__v4sf)__A);
152}
153
154extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
155_mm_rcp_ss (__m128 __A)
156{
157 return (__m128) __builtin_ia32_rcpss ((__v4sf)__A);
158}
159
160extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
161_mm_rsqrt_ss (__m128 __A)
162{
163 return (__m128) __builtin_ia32_rsqrtss ((__v4sf)__A);
164}
165
166extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
167_mm_min_ss (__m128 __A, __m128 __B)
168{
169 return (__m128) __builtin_ia32_minss ((__v4sf)__A, (__v4sf)__B);
170}
171
172extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
173_mm_max_ss (__m128 __A, __m128 __B)
174{
175 return (__m128) __builtin_ia32_maxss ((__v4sf)__A, (__v4sf)__B);
176}
177
178/* Perform the respective operation on the four SPFP values in A and B. */
179
180extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
181_mm_add_ps (__m128 __A, __m128 __B)
182{
183 return (__m128) ((__v4sf)__A + (__v4sf)__B);
184}
185
186extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
187_mm_sub_ps (__m128 __A, __m128 __B)
188{
189 return (__m128) ((__v4sf)__A - (__v4sf)__B);
190}
191
192extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
193_mm_mul_ps (__m128 __A, __m128 __B)
194{
195 return (__m128) ((__v4sf)__A * (__v4sf)__B);
196}
197
198extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
199_mm_div_ps (__m128 __A, __m128 __B)
200{
201 return (__m128) ((__v4sf)__A / (__v4sf)__B);
202}
203
204extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
205_mm_sqrt_ps (__m128 __A)
206{
207 return (__m128) __builtin_ia32_sqrtps ((__v4sf)__A);
208}
209
210extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
211_mm_rcp_ps (__m128 __A)
212{
213 return (__m128) __builtin_ia32_rcpps ((__v4sf)__A);
214}
215
216extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
217_mm_rsqrt_ps (__m128 __A)
218{
219 return (__m128) __builtin_ia32_rsqrtps ((__v4sf)__A);
220}
221
222extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
223_mm_min_ps (__m128 __A, __m128 __B)
224{
225 return (__m128) __builtin_ia32_minps ((__v4sf)__A, (__v4sf)__B);
226}
227
228extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
229_mm_max_ps (__m128 __A, __m128 __B)
230{
231 return (__m128) __builtin_ia32_maxps ((__v4sf)__A, (__v4sf)__B);
232}
233
234/* Perform logical bit-wise operations on 128-bit values. */
235
236extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
237_mm_and_ps (__m128 __A, __m128 __B)
238{
239 return __builtin_ia32_andps (__A, __B);
240}
241
242extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
243_mm_andnot_ps (__m128 __A, __m128 __B)
244{
245 return __builtin_ia32_andnps (__A, __B);
246}
247
248extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
249_mm_or_ps (__m128 __A, __m128 __B)
250{
251 return __builtin_ia32_orps (__A, __B);
252}
253
254extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
255_mm_xor_ps (__m128 __A, __m128 __B)
256{
257 return __builtin_ia32_xorps (__A, __B);
258}
259
260/* Perform a comparison on the lower SPFP values of A and B. If the
261 comparison is true, place a mask of all ones in the result, otherwise a
262 mask of zeros. The upper three SPFP values are passed through from A. */
263
264extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
265_mm_cmpeq_ss (__m128 __A, __m128 __B)
266{
267 return (__m128) __builtin_ia32_cmpeqss ((__v4sf)__A, (__v4sf)__B);
268}
269
270extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
271_mm_cmplt_ss (__m128 __A, __m128 __B)
272{
273 return (__m128) __builtin_ia32_cmpltss ((__v4sf)__A, (__v4sf)__B);
274}
275
276extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
277_mm_cmple_ss (__m128 __A, __m128 __B)
278{
279 return (__m128) __builtin_ia32_cmpless ((__v4sf)__A, (__v4sf)__B);
280}
281
282extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
283_mm_cmpgt_ss (__m128 __A, __m128 __B)
284{
285 return (__m128) __builtin_ia32_movss ((__v4sf) __A,
286 (__v4sf)
287 __builtin_ia32_cmpltss ((__v4sf) __B,
288 (__v4sf)
289 __A));
290}
291
292extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
293_mm_cmpge_ss (__m128 __A, __m128 __B)
294{
295 return (__m128) __builtin_ia32_movss ((__v4sf) __A,
296 (__v4sf)
297 __builtin_ia32_cmpless ((__v4sf) __B,
298 (__v4sf)
299 __A));
300}
301
302extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
303_mm_cmpneq_ss (__m128 __A, __m128 __B)
304{
305 return (__m128) __builtin_ia32_cmpneqss ((__v4sf)__A, (__v4sf)__B);
306}
307
308extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
309_mm_cmpnlt_ss (__m128 __A, __m128 __B)
310{
311 return (__m128) __builtin_ia32_cmpnltss ((__v4sf)__A, (__v4sf)__B);
312}
313
314extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
315_mm_cmpnle_ss (__m128 __A, __m128 __B)
316{
317 return (__m128) __builtin_ia32_cmpnless ((__v4sf)__A, (__v4sf)__B);
318}
319
320extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
321_mm_cmpngt_ss (__m128 __A, __m128 __B)
322{
323 return (__m128) __builtin_ia32_movss ((__v4sf) __A,
324 (__v4sf)
325 __builtin_ia32_cmpnltss ((__v4sf) __B,
326 (__v4sf)
327 __A));
328}
329
330extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
331_mm_cmpnge_ss (__m128 __A, __m128 __B)
332{
333 return (__m128) __builtin_ia32_movss ((__v4sf) __A,
334 (__v4sf)
335 __builtin_ia32_cmpnless ((__v4sf) __B,
336 (__v4sf)
337 __A));
338}
339
340extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
341_mm_cmpord_ss (__m128 __A, __m128 __B)
342{
343 return (__m128) __builtin_ia32_cmpordss ((__v4sf)__A, (__v4sf)__B);
344}
345
346extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
347_mm_cmpunord_ss (__m128 __A, __m128 __B)
348{
349 return (__m128) __builtin_ia32_cmpunordss ((__v4sf)__A, (__v4sf)__B);
350}
351
352/* Perform a comparison on the four SPFP values of A and B. For each
353 element, if the comparison is true, place a mask of all ones in the
354 result, otherwise a mask of zeros. */
355
356extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
357_mm_cmpeq_ps (__m128 __A, __m128 __B)
358{
359 return (__m128) __builtin_ia32_cmpeqps ((__v4sf)__A, (__v4sf)__B);
360}
361
362extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
363_mm_cmplt_ps (__m128 __A, __m128 __B)
364{
365 return (__m128) __builtin_ia32_cmpltps ((__v4sf)__A, (__v4sf)__B);
366}
367
368extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
369_mm_cmple_ps (__m128 __A, __m128 __B)
370{
371 return (__m128) __builtin_ia32_cmpleps ((__v4sf)__A, (__v4sf)__B);
372}
373
374extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
375_mm_cmpgt_ps (__m128 __A, __m128 __B)
376{
377 return (__m128) __builtin_ia32_cmpgtps ((__v4sf)__A, (__v4sf)__B);
378}
379
380extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
381_mm_cmpge_ps (__m128 __A, __m128 __B)
382{
383 return (__m128) __builtin_ia32_cmpgeps ((__v4sf)__A, (__v4sf)__B);
384}
385
386extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
387_mm_cmpneq_ps (__m128 __A, __m128 __B)
388{
389 return (__m128) __builtin_ia32_cmpneqps ((__v4sf)__A, (__v4sf)__B);
390}
391
392extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
393_mm_cmpnlt_ps (__m128 __A, __m128 __B)
394{
395 return (__m128) __builtin_ia32_cmpnltps ((__v4sf)__A, (__v4sf)__B);
396}
397
398extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
399_mm_cmpnle_ps (__m128 __A, __m128 __B)
400{
401 return (__m128) __builtin_ia32_cmpnleps ((__v4sf)__A, (__v4sf)__B);
402}
403
404extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
405_mm_cmpngt_ps (__m128 __A, __m128 __B)
406{
407 return (__m128) __builtin_ia32_cmpngtps ((__v4sf)__A, (__v4sf)__B);
408}
409
410extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
411_mm_cmpnge_ps (__m128 __A, __m128 __B)
412{
413 return (__m128) __builtin_ia32_cmpngeps ((__v4sf)__A, (__v4sf)__B);
414}
415
416extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
417_mm_cmpord_ps (__m128 __A, __m128 __B)
418{
419 return (__m128) __builtin_ia32_cmpordps ((__v4sf)__A, (__v4sf)__B);
420}
421
422extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
423_mm_cmpunord_ps (__m128 __A, __m128 __B)
424{
425 return (__m128) __builtin_ia32_cmpunordps ((__v4sf)__A, (__v4sf)__B);
426}
427
428/* Compare the lower SPFP values of A and B and return 1 if true
429 and 0 if false. */
430
431extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
432_mm_comieq_ss (__m128 __A, __m128 __B)
433{
434 return __builtin_ia32_comieq ((__v4sf)__A, (__v4sf)__B);
435}
436
437extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
438_mm_comilt_ss (__m128 __A, __m128 __B)
439{
440 return __builtin_ia32_comilt ((__v4sf)__A, (__v4sf)__B);
441}
442
443extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
444_mm_comile_ss (__m128 __A, __m128 __B)
445{
446 return __builtin_ia32_comile ((__v4sf)__A, (__v4sf)__B);
447}
448
449extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
450_mm_comigt_ss (__m128 __A, __m128 __B)
451{
452 return __builtin_ia32_comigt ((__v4sf)__A, (__v4sf)__B);
453}
454
455extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
456_mm_comige_ss (__m128 __A, __m128 __B)
457{
458 return __builtin_ia32_comige ((__v4sf)__A, (__v4sf)__B);
459}
460
461extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
462_mm_comineq_ss (__m128 __A, __m128 __B)
463{
464 return __builtin_ia32_comineq ((__v4sf)__A, (__v4sf)__B);
465}
466
467extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
468_mm_ucomieq_ss (__m128 __A, __m128 __B)
469{
470 return __builtin_ia32_ucomieq ((__v4sf)__A, (__v4sf)__B);
471}
472
473extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
474_mm_ucomilt_ss (__m128 __A, __m128 __B)
475{
476 return __builtin_ia32_ucomilt ((__v4sf)__A, (__v4sf)__B);
477}
478
479extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
480_mm_ucomile_ss (__m128 __A, __m128 __B)
481{
482 return __builtin_ia32_ucomile ((__v4sf)__A, (__v4sf)__B);
483}
484
485extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
486_mm_ucomigt_ss (__m128 __A, __m128 __B)
487{
488 return __builtin_ia32_ucomigt ((__v4sf)__A, (__v4sf)__B);
489}
490
491extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
492_mm_ucomige_ss (__m128 __A, __m128 __B)
493{
494 return __builtin_ia32_ucomige ((__v4sf)__A, (__v4sf)__B);
495}
496
497extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
498_mm_ucomineq_ss (__m128 __A, __m128 __B)
499{
500 return __builtin_ia32_ucomineq ((__v4sf)__A, (__v4sf)__B);
501}
502
503/* Convert the lower SPFP value to a 32-bit integer according to the current
504 rounding mode. */
505extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
506_mm_cvtss_si32 (__m128 __A)
507{
508 return __builtin_ia32_cvtss2si ((__v4sf) __A);
509}
510
511extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
512_mm_cvt_ss2si (__m128 __A)
513{
514 return _mm_cvtss_si32 (__A);
515}
516
517#ifdef __x86_64__
518/* Convert the lower SPFP value to a 32-bit integer according to the
519 current rounding mode. */
520
521/* Intel intrinsic. */
522extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
523_mm_cvtss_si64 (__m128 __A)
524{
525 return __builtin_ia32_cvtss2si64 ((__v4sf) __A);
526}
527
528/* Microsoft intrinsic. */
529extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
530_mm_cvtss_si64x (__m128 __A)
531{
532 return __builtin_ia32_cvtss2si64 ((__v4sf) __A);
533}
534#endif
535
536/* Convert the two lower SPFP values to 32-bit integers according to the
537 current rounding mode. Return the integers in packed form. */
538extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
539_mm_cvtps_pi32 (__m128 __A)
540{
541 return (__m64) __builtin_ia32_cvtps2pi ((__v4sf) __A);
542}
543
544extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
545_mm_cvt_ps2pi (__m128 __A)
546{
547 return _mm_cvtps_pi32 (__A);
548}
549
550/* Truncate the lower SPFP value to a 32-bit integer. */
551extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
552_mm_cvttss_si32 (__m128 __A)
553{
554 return __builtin_ia32_cvttss2si ((__v4sf) __A);
555}
556
557extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
558_mm_cvtt_ss2si (__m128 __A)
559{
560 return _mm_cvttss_si32 (__A);
561}
562
563#ifdef __x86_64__
564/* Truncate the lower SPFP value to a 32-bit integer. */
565
566/* Intel intrinsic. */
567extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
568_mm_cvttss_si64 (__m128 __A)
569{
570 return __builtin_ia32_cvttss2si64 ((__v4sf) __A);
571}
572
573/* Microsoft intrinsic. */
574extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
575_mm_cvttss_si64x (__m128 __A)
576{
577 return __builtin_ia32_cvttss2si64 ((__v4sf) __A);
578}
579#endif
580
581/* Truncate the two lower SPFP values to 32-bit integers. Return the
582 integers in packed form. */
583extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
584_mm_cvttps_pi32 (__m128 __A)
585{
586 return (__m64) __builtin_ia32_cvttps2pi ((__v4sf) __A);
587}
588
589extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
590_mm_cvtt_ps2pi (__m128 __A)
591{
592 return _mm_cvttps_pi32 (__A);
593}
594
595/* Convert B to a SPFP value and insert it as element zero in A. */
596extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
597_mm_cvtsi32_ss (__m128 __A, int __B)
598{
599 return (__m128) __builtin_ia32_cvtsi2ss ((__v4sf) __A, __B);
600}
601
602extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
603_mm_cvt_si2ss (__m128 __A, int __B)
604{
605 return _mm_cvtsi32_ss (__A, __B);
606}
607
608#ifdef __x86_64__
609/* Convert B to a SPFP value and insert it as element zero in A. */
610
611/* Intel intrinsic. */
612extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
613_mm_cvtsi64_ss (__m128 __A, long long __B)
614{
615 return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B);
616}
617
618/* Microsoft intrinsic. */
619extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
620_mm_cvtsi64x_ss (__m128 __A, long long __B)
621{
622 return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B);
623}
624#endif
625
626/* Convert the two 32-bit values in B to SPFP form and insert them
627 as the two lower elements in A. */
628extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
629_mm_cvtpi32_ps (__m128 __A, __m64 __B)
630{
631 return (__m128) __builtin_ia32_cvtpi2ps ((__v4sf) __A, (__v2si)__B);
632}
633
634extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
635_mm_cvt_pi2ps (__m128 __A, __m64 __B)
636{
637 return _mm_cvtpi32_ps (__A, __B);
638}
639
640/* Convert the four signed 16-bit values in A to SPFP form. */
641extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
642_mm_cvtpi16_ps (__m64 __A)
643{
644 __v4hi __sign;
645 __v2si __hisi, __losi;
646 __v4sf __zero, __ra, __rb;
647
648 /* This comparison against zero gives us a mask that can be used to
649 fill in the missing sign bits in the unpack operations below, so
650 that we get signed values after unpacking. */
651 __sign = __builtin_ia32_pcmpgtw ((__v4hi)0LL, (__v4hi)__A);
652
653 /* Convert the four words to doublewords. */
654 __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __sign);
655 __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __sign);
656
657 /* Convert the doublewords to floating point two at a time. */
658 __zero = (__v4sf) _mm_setzero_ps ();
659 __ra = __builtin_ia32_cvtpi2ps (__zero, __losi);
660 __rb = __builtin_ia32_cvtpi2ps (__ra, __hisi);
661
662 return (__m128) __builtin_ia32_movlhps (__ra, __rb);
663}
664
665/* Convert the four unsigned 16-bit values in A to SPFP form. */
666extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
667_mm_cvtpu16_ps (__m64 __A)
668{
669 __v2si __hisi, __losi;
670 __v4sf __zero, __ra, __rb;
671
672 /* Convert the four words to doublewords. */
673 __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, (__v4hi)0LL);
674 __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, (__v4hi)0LL);
675
676 /* Convert the doublewords to floating point two at a time. */
677 __zero = (__v4sf) _mm_setzero_ps ();
678 __ra = __builtin_ia32_cvtpi2ps (__zero, __losi);
679 __rb = __builtin_ia32_cvtpi2ps (__ra, __hisi);
680
681 return (__m128) __builtin_ia32_movlhps (__ra, __rb);
682}
683
684/* Convert the low four signed 8-bit values in A to SPFP form. */
685extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
686_mm_cvtpi8_ps (__m64 __A)
687{
688 __v8qi __sign;
689
690 /* This comparison against zero gives us a mask that can be used to
691 fill in the missing sign bits in the unpack operations below, so
692 that we get signed values after unpacking. */
693 __sign = __builtin_ia32_pcmpgtb ((__v8qi)0LL, (__v8qi)__A);
694
695 /* Convert the four low bytes to words. */
696 __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __sign);
697
698 return _mm_cvtpi16_ps(__A);
699}
700
701/* Convert the low four unsigned 8-bit values in A to SPFP form. */
702extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
703_mm_cvtpu8_ps(__m64 __A)
704{
705 __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, (__v8qi)0LL);
706 return _mm_cvtpu16_ps(__A);
707}
708
709/* Convert the four signed 32-bit values in A and B to SPFP form. */
710extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
711_mm_cvtpi32x2_ps(__m64 __A, __m64 __B)
712{
713 __v4sf __zero = (__v4sf) _mm_setzero_ps ();
714 __v4sf __sfa = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__A);
715 __v4sf __sfb = __builtin_ia32_cvtpi2ps (__sfa, (__v2si)__B);
716 return (__m128) __builtin_ia32_movlhps (__sfa, __sfb);
717}
718
719/* Convert the four SPFP values in A to four signed 16-bit integers. */
720extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
721_mm_cvtps_pi16(__m128 __A)
722{
723 __v4sf __hisf = (__v4sf)__A;
724 __v4sf __losf = __builtin_ia32_movhlps (__hisf, __hisf);
725 __v2si __hisi = __builtin_ia32_cvtps2pi (__hisf);
726 __v2si __losi = __builtin_ia32_cvtps2pi (__losf);
727 return (__m64) __builtin_ia32_packssdw (__hisi, __losi);
728}
729
730/* Convert the four SPFP values in A to four signed 8-bit integers. */
731extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
732_mm_cvtps_pi8(__m128 __A)
733{
734 __v4hi __tmp = (__v4hi) _mm_cvtps_pi16 (__A);
735 return (__m64) __builtin_ia32_packsswb (__tmp, (__v4hi)0LL);
736}
737
738/* Selects four specific SPFP values from A and B based on MASK. */
739#ifdef __OPTIMIZE__
740extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
741_mm_shuffle_ps (__m128 __A, __m128 __B, int const __mask)
742{
743 return (__m128) __builtin_ia32_shufps ((__v4sf)__A, (__v4sf)__B, __mask);
744}
745#else
746#define _mm_shuffle_ps(A, B, MASK) \
747 ((__m128) __builtin_ia32_shufps ((__v4sf)(__m128)(A), \
748 (__v4sf)(__m128)(B), (int)(MASK)))
749#endif
750
751/* Selects and interleaves the upper two SPFP values from A and B. */
752extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
753_mm_unpackhi_ps (__m128 __A, __m128 __B)
754{
755 return (__m128) __builtin_ia32_unpckhps ((__v4sf)__A, (__v4sf)__B);
756}
757
758/* Selects and interleaves the lower two SPFP values from A and B. */
759extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
760_mm_unpacklo_ps (__m128 __A, __m128 __B)
761{
762 return (__m128) __builtin_ia32_unpcklps ((__v4sf)__A, (__v4sf)__B);
763}
764
765/* Sets the upper two SPFP values with 64-bits of data loaded from P;
766 the lower two values are passed through from A. */
767extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
768_mm_loadh_pi (__m128 __A, __m64 const *__P)
769{
770 return (__m128) __builtin_ia32_loadhps ((__v4sf)__A, (const __v2sf *)__P);
771}
772
773/* Stores the upper two SPFP values of A into P. */
774extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
775_mm_storeh_pi (__m64 *__P, __m128 __A)
776{
777 __builtin_ia32_storehps ((__v2sf *)__P, (__v4sf)__A);
778}
779
780/* Moves the upper two values of B into the lower two values of A. */
781extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
782_mm_movehl_ps (__m128 __A, __m128 __B)
783{
784 return (__m128) __builtin_ia32_movhlps ((__v4sf)__A, (__v4sf)__B);
785}
786
787/* Moves the lower two values of B into the upper two values of A. */
788extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
789_mm_movelh_ps (__m128 __A, __m128 __B)
790{
791 return (__m128) __builtin_ia32_movlhps ((__v4sf)__A, (__v4sf)__B);
792}
793
794/* Sets the lower two SPFP values with 64-bits of data loaded from P;
795 the upper two values are passed through from A. */
796extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
797_mm_loadl_pi (__m128 __A, __m64 const *__P)
798{
799 return (__m128) __builtin_ia32_loadlps ((__v4sf)__A, (const __v2sf *)__P);
800}
801
802/* Stores the lower two SPFP values of A into P. */
803extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
804_mm_storel_pi (__m64 *__P, __m128 __A)
805{
806 __builtin_ia32_storelps ((__v2sf *)__P, (__v4sf)__A);
807}
808
809/* Creates a 4-bit mask from the most significant bits of the SPFP values. */
810extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
811_mm_movemask_ps (__m128 __A)
812{
813 return __builtin_ia32_movmskps ((__v4sf)__A);
814}
815
816/* Return the contents of the control register. */
817extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
818_mm_getcsr (void)
819{
820 return __builtin_ia32_stmxcsr ();
821}
822
823/* Read exception bits from the control register. */
824extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
825_MM_GET_EXCEPTION_STATE (void)
826{
827 return _mm_getcsr() & _MM_EXCEPT_MASK;
828}
829
830extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
831_MM_GET_EXCEPTION_MASK (void)
832{
833 return _mm_getcsr() & _MM_MASK_MASK;
834}
835
836extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
837_MM_GET_ROUNDING_MODE (void)
838{
839 return _mm_getcsr() & _MM_ROUND_MASK;
840}
841
842extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
843_MM_GET_FLUSH_ZERO_MODE (void)
844{
845 return _mm_getcsr() & _MM_FLUSH_ZERO_MASK;
846}
847
848/* Set the control register to I. */
849extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
850_mm_setcsr (unsigned int __I)
851{
852 __builtin_ia32_ldmxcsr (__I);
853}
854
855/* Set exception bits in the control register. */
856extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
857_MM_SET_EXCEPTION_STATE(unsigned int __mask)
858{
859 _mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | __mask);
860}
861
862extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
863_MM_SET_EXCEPTION_MASK (unsigned int __mask)
864{
865 _mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | __mask);
866}
867
868extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
869_MM_SET_ROUNDING_MODE (unsigned int __mode)
870{
871 _mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | __mode);
872}
873
874extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
875_MM_SET_FLUSH_ZERO_MODE (unsigned int __mode)
876{
877 _mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | __mode);
878}
879
880/* Create a vector with element 0 as F and the rest zero. */
881extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
882_mm_set_ss (float __F)
883{
884 return __extension__ (__m128)(__v4sf){ __F, 0.0f, 0.0f, 0.0f };
885}
886
887/* Create a vector with all four elements equal to F. */
888extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
889_mm_set1_ps (float __F)
890{
891 return __extension__ (__m128)(__v4sf){ __F, __F, __F, __F };
892}
893
894extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
895_mm_set_ps1 (float __F)
896{
897 return _mm_set1_ps (__F);
898}
899
900/* Create a vector with element 0 as *P and the rest zero. */
901extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
902_mm_load_ss (float const *__P)
903{
904 return _mm_set_ss (*__P);
905}
906
907/* Create a vector with all four elements equal to *P. */
908extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
909_mm_load1_ps (float const *__P)
910{
911 return _mm_set1_ps (*__P);
912}
913
914extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
915_mm_load_ps1 (float const *__P)
916{
917 return _mm_load1_ps (__P);
918}
919
920/* Load four SPFP values from P. The address must be 16-byte aligned. */
921extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
922_mm_load_ps (float const *__P)
923{
924 return (__m128) *(__v4sf *)__P;
925}
926
927/* Load four SPFP values from P. The address need not be 16-byte aligned. */
928extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
929_mm_loadu_ps (float const *__P)
930{
931 return (__m128) __builtin_ia32_loadups (__P);
932}
933
934/* Load four SPFP values in reverse order. The address must be aligned. */
935extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
936_mm_loadr_ps (float const *__P)
937{
938 __v4sf __tmp = *(__v4sf *)__P;
939 return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,1,2,3));
940}
941
942/* Create the vector [Z Y X W]. */
943extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
944_mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
945{
946 return __extension__ (__m128)(__v4sf){ __W, __X, __Y, __Z };
947}
948
949/* Create the vector [W X Y Z]. */
950extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
951_mm_setr_ps (float __Z, float __Y, float __X, float __W)
952{
953 return __extension__ (__m128)(__v4sf){ __Z, __Y, __X, __W };
954}
955
956/* Stores the lower SPFP value. */
957extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
958_mm_store_ss (float *__P, __m128 __A)
959{
960 *__P = ((__v4sf)__A)[0];
961}
962
963extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__))
964_mm_cvtss_f32 (__m128 __A)
965{
966 return ((__v4sf)__A)[0];
967}
968
969/* Store four SPFP values. The address must be 16-byte aligned. */
970extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
971_mm_store_ps (float *__P, __m128 __A)
972{
973 *(__v4sf *)__P = (__v4sf)__A;
974}
975
976/* Store four SPFP values. The address need not be 16-byte aligned. */
977extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
978_mm_storeu_ps (float *__P, __m128 __A)
979{
980 __builtin_ia32_storeups (__P, (__v4sf)__A);
981}
982
983/* Store the lower SPFP value across four words. */
984extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
985_mm_store1_ps (float *__P, __m128 __A)
986{
987 __v4sf __va = (__v4sf)__A;
988 __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,0,0,0));
989 _mm_storeu_ps (__P, __tmp);
990}
991
992extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
993_mm_store_ps1 (float *__P, __m128 __A)
994{
995 _mm_store1_ps (__P, __A);
996}
997
998/* Store four SPFP values in reverse order. The address must be aligned. */
999extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1000_mm_storer_ps (float *__P, __m128 __A)
1001{
1002 __v4sf __va = (__v4sf)__A;
1003 __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,1,2,3));
1004 _mm_store_ps (__P, __tmp);
1005}
1006
1007/* Sets the low SPFP value of A from the low value of B. */
1008extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1009_mm_move_ss (__m128 __A, __m128 __B)
1010{
1011 return (__m128) __builtin_ia32_movss ((__v4sf)__A, (__v4sf)__B);
1012}
1013
1014/* Extracts one of the four words of A. The selector N must be immediate. */
1015#ifdef __OPTIMIZE__
1016extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1017_mm_extract_pi16 (__m64 const __A, int const __N)
1018{
1019 return __builtin_ia32_vec_ext_v4hi ((__v4hi)__A, __N);
1020}
1021
1022extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1023_m_pextrw (__m64 const __A, int const __N)
1024{
1025 return _mm_extract_pi16 (__A, __N);
1026}
1027#else
1028#define _mm_extract_pi16(A, N) \
1029 ((int) __builtin_ia32_vec_ext_v4hi ((__v4hi)(__m64)(A), (int)(N)))
1030
1031#define _m_pextrw(A, N) _mm_extract_pi16(A, N)
1032#endif
1033
1034/* Inserts word D into one of four words of A. The selector N must be
1035 immediate. */
1036#ifdef __OPTIMIZE__
1037extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1038_mm_insert_pi16 (__m64 const __A, int const __D, int const __N)
1039{
1040 return (__m64) __builtin_ia32_vec_set_v4hi ((__v4hi)__A, __D, __N);
1041}
1042
1043extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1044_m_pinsrw (__m64 const __A, int const __D, int const __N)
1045{
1046 return _mm_insert_pi16 (__A, __D, __N);
1047}
1048#else
1049#define _mm_insert_pi16(A, D, N) \
1050 ((__m64) __builtin_ia32_vec_set_v4hi ((__v4hi)(__m64)(A), \
1051 (int)(D), (int)(N)))
1052
1053#define _m_pinsrw(A, D, N) _mm_insert_pi16(A, D, N)
1054#endif
1055
1056/* Compute the element-wise maximum of signed 16-bit values. */
1057extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1058_mm_max_pi16 (__m64 __A, __m64 __B)
1059{
1060 return (__m64) __builtin_ia32_pmaxsw ((__v4hi)__A, (__v4hi)__B);
1061}
1062
1063extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1064_m_pmaxsw (__m64 __A, __m64 __B)
1065{
1066 return _mm_max_pi16 (__A, __B);
1067}
1068
1069/* Compute the element-wise maximum of unsigned 8-bit values. */
1070extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1071_mm_max_pu8 (__m64 __A, __m64 __B)
1072{
1073 return (__m64) __builtin_ia32_pmaxub ((__v8qi)__A, (__v8qi)__B);
1074}
1075
1076extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1077_m_pmaxub (__m64 __A, __m64 __B)
1078{
1079 return _mm_max_pu8 (__A, __B);
1080}
1081
1082/* Compute the element-wise minimum of signed 16-bit values. */
1083extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1084_mm_min_pi16 (__m64 __A, __m64 __B)
1085{
1086 return (__m64) __builtin_ia32_pminsw ((__v4hi)__A, (__v4hi)__B);
1087}
1088
1089extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1090_m_pminsw (__m64 __A, __m64 __B)
1091{
1092 return _mm_min_pi16 (__A, __B);
1093}
1094
1095/* Compute the element-wise minimum of unsigned 8-bit values. */
1096extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1097_mm_min_pu8 (__m64 __A, __m64 __B)
1098{
1099 return (__m64) __builtin_ia32_pminub ((__v8qi)__A, (__v8qi)__B);
1100}
1101
1102extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1103_m_pminub (__m64 __A, __m64 __B)
1104{
1105 return _mm_min_pu8 (__A, __B);
1106}
1107
1108/* Create an 8-bit mask of the signs of 8-bit values. */
1109extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1110_mm_movemask_pi8 (__m64 __A)
1111{
1112 return __builtin_ia32_pmovmskb ((__v8qi)__A);
1113}
1114
1115extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1116_m_pmovmskb (__m64 __A)
1117{
1118 return _mm_movemask_pi8 (__A);
1119}
1120
1121/* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
1122 in B and produce the high 16 bits of the 32-bit results. */
1123extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1124_mm_mulhi_pu16 (__m64 __A, __m64 __B)
1125{
1126 return (__m64) __builtin_ia32_pmulhuw ((__v4hi)__A, (__v4hi)__B);
1127}
1128
1129extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1130_m_pmulhuw (__m64 __A, __m64 __B)
1131{
1132 return _mm_mulhi_pu16 (__A, __B);
1133}
1134
1135/* Return a combination of the four 16-bit values in A. The selector
1136 must be an immediate. */
1137#ifdef __OPTIMIZE__
1138extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1139_mm_shuffle_pi16 (__m64 __A, int const __N)
1140{
1141 return (__m64) __builtin_ia32_pshufw ((__v4hi)__A, __N);
1142}
1143
1144extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1145_m_pshufw (__m64 __A, int const __N)
1146{
1147 return _mm_shuffle_pi16 (__A, __N);
1148}
1149#else
1150#define _mm_shuffle_pi16(A, N) \
1151 ((__m64) __builtin_ia32_pshufw ((__v4hi)(__m64)(A), (int)(N)))
1152
1153#define _m_pshufw(A, N) _mm_shuffle_pi16 (A, N)
1154#endif
1155
1156/* Conditionally store byte elements of A into P. The high bit of each
1157 byte in the selector N determines whether the corresponding byte from
1158 A is stored. */
1159extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1160_mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
1161{
1162 __builtin_ia32_maskmovq ((__v8qi)__A, (__v8qi)__N, __P);
1163}
1164
1165extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1166_m_maskmovq (__m64 __A, __m64 __N, char *__P)
1167{
1168 _mm_maskmove_si64 (__A, __N, __P);
1169}
1170
1171/* Compute the rounded averages of the unsigned 8-bit values in A and B. */
1172extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1173_mm_avg_pu8 (__m64 __A, __m64 __B)
1174{
1175 return (__m64) __builtin_ia32_pavgb ((__v8qi)__A, (__v8qi)__B);
1176}
1177
1178extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1179_m_pavgb (__m64 __A, __m64 __B)
1180{
1181 return _mm_avg_pu8 (__A, __B);
1182}
1183
1184/* Compute the rounded averages of the unsigned 16-bit values in A and B. */
1185extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1186_mm_avg_pu16 (__m64 __A, __m64 __B)
1187{
1188 return (__m64) __builtin_ia32_pavgw ((__v4hi)__A, (__v4hi)__B);
1189}
1190
1191extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1192_m_pavgw (__m64 __A, __m64 __B)
1193{
1194 return _mm_avg_pu16 (__A, __B);
1195}
1196
1197/* Compute the sum of the absolute differences of the unsigned 8-bit
1198 values in A and B. Return the value in the lower 16-bit word; the
1199 upper words are cleared. */
1200extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1201_mm_sad_pu8 (__m64 __A, __m64 __B)
1202{
1203 return (__m64) __builtin_ia32_psadbw ((__v8qi)__A, (__v8qi)__B);
1204}
1205
1206extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1207_m_psadbw (__m64 __A, __m64 __B)
1208{
1209 return _mm_sad_pu8 (__A, __B);
1210}
1211
1212/* Stores the data in A to the address P without polluting the caches. */
1213extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1214_mm_stream_pi (__m64 *__P, __m64 __A)
1215{
1216 __builtin_ia32_movntq ((unsigned long long *)__P, (unsigned long long)__A);
1217}
1218
1219/* Likewise. The address must be 16-byte aligned. */
1220extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1221_mm_stream_ps (float *__P, __m128 __A)
1222{
1223 __builtin_ia32_movntps (__P, (__v4sf)__A);
1224}
1225
1226/* Guarantees that every preceding store is globally visible before
1227 any subsequent store. */
1228extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1229_mm_sfence (void)
1230{
1231 __builtin_ia32_sfence ();
1232}
1233
1234/* Transpose the 4x4 matrix composed of row[0-3]. */
1235#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
1236do { \
1237 __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \
1238 __v4sf __t0 = __builtin_ia32_unpcklps (__r0, __r1); \
1239 __v4sf __t1 = __builtin_ia32_unpcklps (__r2, __r3); \
1240 __v4sf __t2 = __builtin_ia32_unpckhps (__r0, __r1); \
1241 __v4sf __t3 = __builtin_ia32_unpckhps (__r2, __r3); \
1242 (row0) = __builtin_ia32_movlhps (__t0, __t1); \
1243 (row1) = __builtin_ia32_movhlps (__t1, __t0); \
1244 (row2) = __builtin_ia32_movlhps (__t2, __t3); \
1245 (row3) = __builtin_ia32_movhlps (__t3, __t2); \
1246} while (0)
1247
1248/* For backward source compatibility. */
1249# include <emmintrin.h>
1250
1251#ifdef __DISABLE_SSE__
1252#undef __DISABLE_SSE__
1253#pragma GCC pop_options
1254#endif /* __DISABLE_SSE__ */
1255
1256/* The execution of the next instruction is delayed by an implementation
1257 specific amount of time. The instruction does not modify the
1258 architectural state. This is after the pop_options pragma because
1259 it does not require SSE support in the processor--the encoding is a
1260 nop on processors that do not support it. */
1261extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1262_mm_pause (void)
1263{
1264 __builtin_ia32_pause ();
1265}
1266
1267#endif /* _XMMINTRIN_H_INCLUDED */
Note: See TracBrowser for help on using the repository browser.