[1114] | 1 | using System;
|
---|
| 2 |
|
---|
| 3 | namespace Oni
|
---|
| 4 | {
|
---|
| 5 | internal struct Quaternion : IEquatable<Quaternion>
|
---|
| 6 | {
|
---|
| 7 | public float X;
|
---|
| 8 | public float Y;
|
---|
| 9 | public float Z;
|
---|
| 10 | public float W;
|
---|
| 11 |
|
---|
| 12 | public Quaternion(Vector3 xyz, float w)
|
---|
| 13 | {
|
---|
| 14 | X = xyz.X;
|
---|
| 15 | Y = xyz.Y;
|
---|
| 16 | Z = xyz.Z;
|
---|
| 17 | W = w;
|
---|
| 18 | }
|
---|
| 19 |
|
---|
| 20 | public Quaternion(float x, float y, float z, float w)
|
---|
| 21 | {
|
---|
| 22 | X = x;
|
---|
| 23 | Y = y;
|
---|
| 24 | Z = z;
|
---|
| 25 | W = w;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public Quaternion(Vector4 xyzw)
|
---|
| 29 | {
|
---|
| 30 | X = xyzw.X;
|
---|
| 31 | Y = xyzw.Y;
|
---|
| 32 | Z = xyzw.Z;
|
---|
| 33 | W = xyzw.W;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | private Vector3 XYZ => new Vector3(X, Y, Z);
|
---|
| 37 |
|
---|
| 38 | public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle)
|
---|
| 39 | {
|
---|
| 40 | float halfAngle = angle * 0.5f;
|
---|
| 41 | float sin = FMath.Sin(halfAngle);
|
---|
| 42 | float cos = FMath.Cos(halfAngle);
|
---|
| 43 |
|
---|
| 44 | return new Quaternion(axis * sin, cos);
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public void ToAxisAngle(out Vector3 axis, out float angle)
|
---|
| 48 | {
|
---|
| 49 | float halfAngle = FMath.Acos(W);
|
---|
| 50 | float sin = FMath.Sqrt(1 - W * W);
|
---|
| 51 |
|
---|
| 52 | if (sin < 1e-5f)
|
---|
| 53 | {
|
---|
| 54 | axis = XYZ;
|
---|
| 55 | angle = 0.0f;
|
---|
| 56 | }
|
---|
| 57 | else
|
---|
| 58 | {
|
---|
| 59 | axis = XYZ / sin;
|
---|
| 60 | angle = halfAngle * 2.0f;
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public static Quaternion CreateFromEulerXYZ(float x, float y, float z)
|
---|
| 65 | {
|
---|
| 66 | x = MathHelper.ToRadians(x);
|
---|
| 67 | y = MathHelper.ToRadians(y);
|
---|
| 68 | z = MathHelper.ToRadians(z);
|
---|
| 69 |
|
---|
| 70 | return CreateFromAxisAngle(Vector3.UnitX, x)
|
---|
| 71 | * CreateFromAxisAngle(Vector3.UnitY, y)
|
---|
| 72 | * CreateFromAxisAngle(Vector3.UnitZ, z);
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | public Vector3 ToEulerXYZ()
|
---|
| 76 | {
|
---|
| 77 | Vector3 r;
|
---|
| 78 |
|
---|
| 79 | var p0 = -W;
|
---|
| 80 | var p1 = X;
|
---|
| 81 | var p2 = Y;
|
---|
| 82 | var p3 = Z;
|
---|
| 83 | var e = -1.0f;
|
---|
| 84 |
|
---|
| 85 | var s = 2.0f * (p0 * p2 + e * p1 * p3);
|
---|
| 86 |
|
---|
| 87 | if (s > 0.999f)
|
---|
| 88 | {
|
---|
| 89 | r.X = MathHelper.ToDegrees(-2.0f * (float)Math.Atan2(p1, p0));
|
---|
| 90 | r.Y = -90.0f;
|
---|
| 91 | r.Z = 0.0f;
|
---|
| 92 | }
|
---|
| 93 | else if (s < -0.999f)
|
---|
| 94 | {
|
---|
| 95 | r.X = MathHelper.ToDegrees(2.0f * (float)Math.Atan2(p1, p0));
|
---|
| 96 | r.Y = 90.0f;
|
---|
| 97 | r.Z = 0.0f;
|
---|
| 98 | }
|
---|
| 99 | else
|
---|
| 100 | {
|
---|
| 101 | r.X = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p1 - e * p2 * p3), 1.0f - 2.0f * (p1 * p1 + p2 * p2)));
|
---|
| 102 | r.Y = -MathHelper.ToDegrees((float)Math.Asin(s));
|
---|
| 103 | r.Z = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p3 - e * p1 * p2), 1.0f - 2.0f * (p2 * p2 + p3 * p3)));
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | return r;
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
|
---|
| 110 | {
|
---|
| 111 | float halfRoll = roll * 0.5f;
|
---|
| 112 | float sinRoll = FMath.Sin(halfRoll);
|
---|
| 113 | float cosRoll = FMath.Cos(halfRoll);
|
---|
| 114 |
|
---|
| 115 | float halfPitch = pitch * 0.5f;
|
---|
| 116 | float sinPitch = FMath.Sin(halfPitch);
|
---|
| 117 | float cosPitch = FMath.Cos(halfPitch);
|
---|
| 118 |
|
---|
| 119 | float halfYaw = yaw * 0.5f;
|
---|
| 120 | float sinYaw = FMath.Sin(halfYaw);
|
---|
| 121 | float cosYaw = FMath.Cos(halfYaw);
|
---|
| 122 |
|
---|
| 123 | Quaternion r;
|
---|
| 124 |
|
---|
| 125 | r.X = (cosYaw * sinPitch * cosRoll) + (sinYaw * cosPitch * sinRoll);
|
---|
| 126 | r.Y = (sinYaw * cosPitch * cosRoll) - (cosYaw * sinPitch * sinRoll);
|
---|
| 127 | r.Z = (cosYaw * cosPitch * sinRoll) - (sinYaw * sinPitch * cosRoll);
|
---|
| 128 | r.W = (cosYaw * cosPitch * cosRoll) + (sinYaw * sinPitch * sinRoll);
|
---|
| 129 |
|
---|
| 130 | return r;
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | public static Quaternion CreateFromRotationMatrix(Matrix m)
|
---|
| 134 | {
|
---|
| 135 | Quaternion q;
|
---|
| 136 |
|
---|
| 137 | float trace = m.M11 + m.M22 + m.M33;
|
---|
| 138 |
|
---|
| 139 | if (trace > 0.0f)
|
---|
| 140 | {
|
---|
| 141 | float s = FMath.Sqrt(1.0f + trace);
|
---|
| 142 | float inv2s = 0.5f / s;
|
---|
| 143 | q.X = (m.M23 - m.M32) * inv2s;
|
---|
| 144 | q.Y = (m.M31 - m.M13) * inv2s;
|
---|
| 145 | q.Z = (m.M12 - m.M21) * inv2s;
|
---|
| 146 | q.W = s * 0.5f;
|
---|
| 147 | }
|
---|
| 148 | else if (m.M11 >= m.M22 && m.M11 >= m.M33)
|
---|
| 149 | {
|
---|
| 150 | float s = FMath.Sqrt(1.0f + m.M11 - m.M22 - m.M33);
|
---|
| 151 | float inv2s = 0.5f / s;
|
---|
| 152 | q.X = s * 0.5f;
|
---|
| 153 | q.Y = (m.M12 + m.M21) * inv2s;
|
---|
| 154 | q.Z = (m.M13 + m.M31) * inv2s;
|
---|
| 155 | q.W = (m.M23 - m.M32) * inv2s;
|
---|
| 156 | }
|
---|
| 157 | else if (m.M22 > m.M33)
|
---|
| 158 | {
|
---|
| 159 | float s = FMath.Sqrt(1.0f - m.M11 + m.M22 - m.M33);
|
---|
| 160 | float inv2s = 0.5f / s;
|
---|
| 161 | q.X = (m.M21 + m.M12) * inv2s;
|
---|
| 162 | q.Y = s * 0.5f;
|
---|
| 163 | q.Z = (m.M32 + m.M23) * inv2s;
|
---|
| 164 | q.W = (m.M31 - m.M13) * inv2s;
|
---|
| 165 | }
|
---|
| 166 | else
|
---|
| 167 | {
|
---|
| 168 | float s = FMath.Sqrt(1.0f - m.M11 - m.M22 + m.M33);
|
---|
| 169 | float inv2s = 0.5f / s;
|
---|
| 170 | q.X = (m.M31 + m.M13) * inv2s;
|
---|
| 171 | q.Y = (m.M32 + m.M23) * inv2s;
|
---|
| 172 | q.Z = s * 0.5f;
|
---|
| 173 | q.W = (m.M12 - m.M21) * inv2s;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | return q;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | public static Quaternion Lerp(Quaternion q1, Quaternion q2, float amount)
|
---|
| 180 | {
|
---|
| 181 | float invAmount = 1.0f - amount;
|
---|
| 182 |
|
---|
| 183 | if (Dot(q1, q2) < 0.0f)
|
---|
| 184 | amount = -amount;
|
---|
| 185 |
|
---|
| 186 | q1.X = invAmount * q1.X + amount * q2.X;
|
---|
| 187 | q1.Y = invAmount * q1.Y + amount * q2.Y;
|
---|
| 188 | q1.Z = invAmount * q1.Z + amount * q2.Z;
|
---|
| 189 | q1.W = invAmount * q1.W + amount * q2.W;
|
---|
| 190 |
|
---|
| 191 | q1.Normalize();
|
---|
| 192 |
|
---|
| 193 | return q1;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | public static float Dot(Quaternion q1, Quaternion q2)
|
---|
| 197 | => q1.X * q2.X + q1.Y * q2.Y + q1.Z * q2.Z + q1.W * q2.W;
|
---|
| 198 |
|
---|
| 199 | public static Quaternion operator +(Quaternion q1, Quaternion q2)
|
---|
| 200 | {
|
---|
| 201 | q1.X += q2.X;
|
---|
| 202 | q1.Y += q2.Y;
|
---|
| 203 | q1.Z += q2.Z;
|
---|
| 204 | q1.W += q2.W;
|
---|
| 205 |
|
---|
| 206 | return q1;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | public static Quaternion operator -(Quaternion q1, Quaternion q2)
|
---|
| 210 | {
|
---|
| 211 | q1.X -= q2.X;
|
---|
| 212 | q1.Y -= q2.Y;
|
---|
| 213 | q1.Z -= q2.Z;
|
---|
| 214 | q1.W -= q2.W;
|
---|
| 215 |
|
---|
| 216 | return q1;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | public static Quaternion operator *(Quaternion q1, Quaternion q2) => new Quaternion
|
---|
| 220 | {
|
---|
| 221 | X = q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y + q1.W * q2.X,
|
---|
| 222 | Y = -q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X + q1.W * q2.Y,
|
---|
| 223 | Z = q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W + q1.W * q2.Z,
|
---|
| 224 | W = -q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z + q1.W * q2.W,
|
---|
| 225 | };
|
---|
| 226 |
|
---|
| 227 | public static Quaternion operator *(Quaternion q, float s)
|
---|
| 228 | {
|
---|
| 229 | q.X *= s;
|
---|
| 230 | q.Y *= s;
|
---|
| 231 | q.Z *= s;
|
---|
| 232 | q.W *= s;
|
---|
| 233 |
|
---|
| 234 | return q;
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | public static bool operator ==(Quaternion q1, Quaternion q2) => q1.Equals(q2);
|
---|
| 238 | public static bool operator !=(Quaternion q1, Quaternion q2) => !q1.Equals(q2);
|
---|
| 239 |
|
---|
| 240 | public static Quaternion Conjugate(Quaternion q)
|
---|
| 241 | {
|
---|
| 242 | q.X = -q.X;
|
---|
| 243 | q.Y = -q.Y;
|
---|
| 244 | q.Z = -q.Z;
|
---|
| 245 |
|
---|
| 246 | return q;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | public Quaternion Inverse()
|
---|
| 250 | {
|
---|
| 251 | float inv = 1.0f / SquaredLength();
|
---|
| 252 |
|
---|
| 253 | Quaternion r;
|
---|
| 254 | r.X = -X * inv;
|
---|
| 255 | r.Y = -Y * inv;
|
---|
| 256 | r.Z = -Z * inv;
|
---|
| 257 | r.W = W * inv;
|
---|
| 258 | return r;
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | public void Normalize()
|
---|
| 262 | {
|
---|
| 263 | float f = 1.0f / Length();
|
---|
| 264 |
|
---|
| 265 | X *= f;
|
---|
| 266 | Y *= f;
|
---|
| 267 | Z *= f;
|
---|
| 268 | W *= f;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | public float Length() => FMath.Sqrt(SquaredLength());
|
---|
| 272 |
|
---|
| 273 | public float SquaredLength() => X * X + Y * Y + Z * Z + W * W;
|
---|
| 274 |
|
---|
| 275 | public bool Equals(Quaternion other) => X == other.X && Y == other.Y && Z == other.Z && W == other.W;
|
---|
| 276 |
|
---|
| 277 | public override bool Equals(object obj) => obj is Quaternion && Equals((Quaternion)obj);
|
---|
| 278 |
|
---|
| 279 | public override int GetHashCode() => X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode();
|
---|
| 280 |
|
---|
| 281 | public override string ToString() => $"{{{X} {Y} {Z} {W}}}";
|
---|
| 282 |
|
---|
| 283 | public Matrix ToMatrix()
|
---|
| 284 | {
|
---|
| 285 | float xx = X * X;
|
---|
| 286 | float yy = Y * Y;
|
---|
| 287 | float zz = Z * Z;
|
---|
| 288 | float xy = X * Y;
|
---|
| 289 | float zw = Z * W;
|
---|
| 290 | float zx = Z * X;
|
---|
| 291 | float yw = Y * W;
|
---|
| 292 | float yz = Y * Z;
|
---|
| 293 | float xw = X * W;
|
---|
| 294 |
|
---|
| 295 | Matrix m;
|
---|
| 296 |
|
---|
| 297 | m.M11 = 1.0f - 2.0f * (yy + zz);
|
---|
| 298 | m.M12 = 2.0f * (xy + zw);
|
---|
| 299 | m.M13 = 2.0f * (zx - yw);
|
---|
| 300 | m.M14 = 0.0f;
|
---|
| 301 |
|
---|
| 302 | m.M21 = 2.0f * (xy - zw);
|
---|
| 303 | m.M22 = 1.0f - 2.0f * (zz + xx);
|
---|
| 304 | m.M23 = 2.0f * (yz + xw);
|
---|
| 305 | m.M24 = 0.0f;
|
---|
| 306 |
|
---|
| 307 | m.M31 = 2.0f * (zx + yw);
|
---|
| 308 | m.M32 = 2.0f * (yz - xw);
|
---|
| 309 | m.M33 = 1.0f - 2.0f * (yy + xx);
|
---|
| 310 | m.M34 = 0.0f;
|
---|
| 311 |
|
---|
| 312 | m.M41 = 0.0f;
|
---|
| 313 | m.M42 = 0.0f;
|
---|
| 314 | m.M43 = 0.0f;
|
---|
| 315 | m.M44 = 1.0f;
|
---|
| 316 |
|
---|
| 317 | return m;
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | public Vector4 ToVector4() => new Vector4(X, Y, Z, W);
|
---|
| 321 |
|
---|
| 322 | private static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1.0f);
|
---|
| 323 |
|
---|
| 324 | public static Quaternion Identity => identity;
|
---|
| 325 | }
|
---|
| 326 | }
|
---|