1 | using System;
|
---|
2 |
|
---|
3 | namespace Oni
|
---|
4 | {
|
---|
5 | internal struct Quaternion : IEquatable<Quaternion>
|
---|
6 | {
|
---|
7 | public float X;
|
---|
8 | public float Y;
|
---|
9 | public float Z;
|
---|
10 | public float W;
|
---|
11 |
|
---|
12 | public Quaternion(Vector3 xyz, float w)
|
---|
13 | {
|
---|
14 | X = xyz.X;
|
---|
15 | Y = xyz.Y;
|
---|
16 | Z = xyz.Z;
|
---|
17 | W = w;
|
---|
18 | }
|
---|
19 |
|
---|
20 | public Quaternion(float x, float y, float z, float w)
|
---|
21 | {
|
---|
22 | X = x;
|
---|
23 | Y = y;
|
---|
24 | Z = z;
|
---|
25 | W = w;
|
---|
26 | }
|
---|
27 |
|
---|
28 | public Quaternion(Vector4 xyzw)
|
---|
29 | {
|
---|
30 | X = xyzw.X;
|
---|
31 | Y = xyzw.Y;
|
---|
32 | Z = xyzw.Z;
|
---|
33 | W = xyzw.W;
|
---|
34 | }
|
---|
35 |
|
---|
36 | private Vector3 XYZ => new Vector3(X, Y, Z);
|
---|
37 |
|
---|
38 | public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle)
|
---|
39 | {
|
---|
40 | float halfAngle = angle * 0.5f;
|
---|
41 | float sin = FMath.Sin(halfAngle);
|
---|
42 | float cos = FMath.Cos(halfAngle);
|
---|
43 |
|
---|
44 | return new Quaternion(axis * sin, cos);
|
---|
45 | }
|
---|
46 |
|
---|
47 | public void ToAxisAngle(out Vector3 axis, out float angle)
|
---|
48 | {
|
---|
49 | float halfAngle = FMath.Acos(W);
|
---|
50 | float sin = FMath.Sqrt(1 - W * W);
|
---|
51 |
|
---|
52 | if (sin < 1e-5f)
|
---|
53 | {
|
---|
54 | axis = XYZ;
|
---|
55 | angle = 0.0f;
|
---|
56 | }
|
---|
57 | else
|
---|
58 | {
|
---|
59 | axis = XYZ / sin;
|
---|
60 | angle = halfAngle * 2.0f;
|
---|
61 | }
|
---|
62 | }
|
---|
63 |
|
---|
64 | public static Quaternion CreateFromEulerXYZ(float x, float y, float z)
|
---|
65 | {
|
---|
66 | x = MathHelper.ToRadians(x);
|
---|
67 | y = MathHelper.ToRadians(y);
|
---|
68 | z = MathHelper.ToRadians(z);
|
---|
69 |
|
---|
70 | return CreateFromAxisAngle(Vector3.UnitX, x)
|
---|
71 | * CreateFromAxisAngle(Vector3.UnitY, y)
|
---|
72 | * CreateFromAxisAngle(Vector3.UnitZ, z);
|
---|
73 | }
|
---|
74 |
|
---|
75 | public Vector3 ToEulerXYZ()
|
---|
76 | {
|
---|
77 | Vector3 r;
|
---|
78 |
|
---|
79 | var p0 = -W;
|
---|
80 | var p1 = X;
|
---|
81 | var p2 = Y;
|
---|
82 | var p3 = Z;
|
---|
83 | var e = -1.0f;
|
---|
84 |
|
---|
85 | var s = 2.0f * (p0 * p2 + e * p1 * p3);
|
---|
86 |
|
---|
87 | if (s > 0.999f)
|
---|
88 | {
|
---|
89 | r.X = MathHelper.ToDegrees(-2.0f * (float)Math.Atan2(p1, p0));
|
---|
90 | r.Y = -90.0f;
|
---|
91 | r.Z = 0.0f;
|
---|
92 | }
|
---|
93 | else if (s < -0.999f)
|
---|
94 | {
|
---|
95 | r.X = MathHelper.ToDegrees(2.0f * (float)Math.Atan2(p1, p0));
|
---|
96 | r.Y = 90.0f;
|
---|
97 | r.Z = 0.0f;
|
---|
98 | }
|
---|
99 | else
|
---|
100 | {
|
---|
101 | r.X = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p1 - e * p2 * p3), 1.0f - 2.0f * (p1 * p1 + p2 * p2)));
|
---|
102 | r.Y = -MathHelper.ToDegrees((float)Math.Asin(s));
|
---|
103 | r.Z = -MathHelper.ToDegrees((float)Math.Atan2(2.0f * (p0 * p3 - e * p1 * p2), 1.0f - 2.0f * (p2 * p2 + p3 * p3)));
|
---|
104 | }
|
---|
105 |
|
---|
106 | return r;
|
---|
107 | }
|
---|
108 |
|
---|
109 | public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll)
|
---|
110 | {
|
---|
111 | float halfRoll = roll * 0.5f;
|
---|
112 | float sinRoll = FMath.Sin(halfRoll);
|
---|
113 | float cosRoll = FMath.Cos(halfRoll);
|
---|
114 |
|
---|
115 | float halfPitch = pitch * 0.5f;
|
---|
116 | float sinPitch = FMath.Sin(halfPitch);
|
---|
117 | float cosPitch = FMath.Cos(halfPitch);
|
---|
118 |
|
---|
119 | float halfYaw = yaw * 0.5f;
|
---|
120 | float sinYaw = FMath.Sin(halfYaw);
|
---|
121 | float cosYaw = FMath.Cos(halfYaw);
|
---|
122 |
|
---|
123 | Quaternion r;
|
---|
124 |
|
---|
125 | r.X = (cosYaw * sinPitch * cosRoll) + (sinYaw * cosPitch * sinRoll);
|
---|
126 | r.Y = (sinYaw * cosPitch * cosRoll) - (cosYaw * sinPitch * sinRoll);
|
---|
127 | r.Z = (cosYaw * cosPitch * sinRoll) - (sinYaw * sinPitch * cosRoll);
|
---|
128 | r.W = (cosYaw * cosPitch * cosRoll) + (sinYaw * sinPitch * sinRoll);
|
---|
129 |
|
---|
130 | return r;
|
---|
131 | }
|
---|
132 |
|
---|
133 | public static Quaternion CreateFromRotationMatrix(Matrix m)
|
---|
134 | {
|
---|
135 | Quaternion q;
|
---|
136 |
|
---|
137 | float trace = m.M11 + m.M22 + m.M33;
|
---|
138 |
|
---|
139 | if (trace > 0.0f)
|
---|
140 | {
|
---|
141 | float s = FMath.Sqrt(1.0f + trace);
|
---|
142 | float inv2s = 0.5f / s;
|
---|
143 | q.X = (m.M23 - m.M32) * inv2s;
|
---|
144 | q.Y = (m.M31 - m.M13) * inv2s;
|
---|
145 | q.Z = (m.M12 - m.M21) * inv2s;
|
---|
146 | q.W = s * 0.5f;
|
---|
147 | }
|
---|
148 | else if (m.M11 >= m.M22 && m.M11 >= m.M33)
|
---|
149 | {
|
---|
150 | float s = FMath.Sqrt(1.0f + m.M11 - m.M22 - m.M33);
|
---|
151 | float inv2s = 0.5f / s;
|
---|
152 | q.X = s * 0.5f;
|
---|
153 | q.Y = (m.M12 + m.M21) * inv2s;
|
---|
154 | q.Z = (m.M13 + m.M31) * inv2s;
|
---|
155 | q.W = (m.M23 - m.M32) * inv2s;
|
---|
156 | }
|
---|
157 | else if (m.M22 > m.M33)
|
---|
158 | {
|
---|
159 | float s = FMath.Sqrt(1.0f - m.M11 + m.M22 - m.M33);
|
---|
160 | float inv2s = 0.5f / s;
|
---|
161 | q.X = (m.M21 + m.M12) * inv2s;
|
---|
162 | q.Y = s * 0.5f;
|
---|
163 | q.Z = (m.M32 + m.M23) * inv2s;
|
---|
164 | q.W = (m.M31 - m.M13) * inv2s;
|
---|
165 | }
|
---|
166 | else
|
---|
167 | {
|
---|
168 | float s = FMath.Sqrt(1.0f - m.M11 - m.M22 + m.M33);
|
---|
169 | float inv2s = 0.5f / s;
|
---|
170 | q.X = (m.M31 + m.M13) * inv2s;
|
---|
171 | q.Y = (m.M32 + m.M23) * inv2s;
|
---|
172 | q.Z = s * 0.5f;
|
---|
173 | q.W = (m.M12 - m.M21) * inv2s;
|
---|
174 | }
|
---|
175 |
|
---|
176 | return q;
|
---|
177 | }
|
---|
178 |
|
---|
179 | public static Quaternion Lerp(Quaternion q1, Quaternion q2, float amount)
|
---|
180 | {
|
---|
181 | float invAmount = 1.0f - amount;
|
---|
182 |
|
---|
183 | if (Dot(q1, q2) < 0.0f)
|
---|
184 | amount = -amount;
|
---|
185 |
|
---|
186 | q1.X = invAmount * q1.X + amount * q2.X;
|
---|
187 | q1.Y = invAmount * q1.Y + amount * q2.Y;
|
---|
188 | q1.Z = invAmount * q1.Z + amount * q2.Z;
|
---|
189 | q1.W = invAmount * q1.W + amount * q2.W;
|
---|
190 |
|
---|
191 | q1.Normalize();
|
---|
192 |
|
---|
193 | return q1;
|
---|
194 | }
|
---|
195 |
|
---|
196 | public static float Dot(Quaternion q1, Quaternion q2)
|
---|
197 | => q1.X * q2.X + q1.Y * q2.Y + q1.Z * q2.Z + q1.W * q2.W;
|
---|
198 |
|
---|
199 | public static Quaternion operator +(Quaternion q1, Quaternion q2)
|
---|
200 | {
|
---|
201 | q1.X += q2.X;
|
---|
202 | q1.Y += q2.Y;
|
---|
203 | q1.Z += q2.Z;
|
---|
204 | q1.W += q2.W;
|
---|
205 |
|
---|
206 | return q1;
|
---|
207 | }
|
---|
208 |
|
---|
209 | public static Quaternion operator -(Quaternion q1, Quaternion q2)
|
---|
210 | {
|
---|
211 | q1.X -= q2.X;
|
---|
212 | q1.Y -= q2.Y;
|
---|
213 | q1.Z -= q2.Z;
|
---|
214 | q1.W -= q2.W;
|
---|
215 |
|
---|
216 | return q1;
|
---|
217 | }
|
---|
218 |
|
---|
219 | public static Quaternion operator *(Quaternion q1, Quaternion q2) => new Quaternion
|
---|
220 | {
|
---|
221 | X = q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y + q1.W * q2.X,
|
---|
222 | Y = -q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X + q1.W * q2.Y,
|
---|
223 | Z = q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W + q1.W * q2.Z,
|
---|
224 | W = -q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z + q1.W * q2.W,
|
---|
225 | };
|
---|
226 |
|
---|
227 | public static Quaternion operator *(Quaternion q, float s)
|
---|
228 | {
|
---|
229 | q.X *= s;
|
---|
230 | q.Y *= s;
|
---|
231 | q.Z *= s;
|
---|
232 | q.W *= s;
|
---|
233 |
|
---|
234 | return q;
|
---|
235 | }
|
---|
236 |
|
---|
237 | public static bool operator ==(Quaternion q1, Quaternion q2) => q1.Equals(q2);
|
---|
238 | public static bool operator !=(Quaternion q1, Quaternion q2) => !q1.Equals(q2);
|
---|
239 |
|
---|
240 | public static Quaternion Conjugate(Quaternion q)
|
---|
241 | {
|
---|
242 | q.X = -q.X;
|
---|
243 | q.Y = -q.Y;
|
---|
244 | q.Z = -q.Z;
|
---|
245 |
|
---|
246 | return q;
|
---|
247 | }
|
---|
248 |
|
---|
249 | public Quaternion Inverse()
|
---|
250 | {
|
---|
251 | float inv = 1.0f / SquaredLength();
|
---|
252 |
|
---|
253 | Quaternion r;
|
---|
254 | r.X = -X * inv;
|
---|
255 | r.Y = -Y * inv;
|
---|
256 | r.Z = -Z * inv;
|
---|
257 | r.W = W * inv;
|
---|
258 | return r;
|
---|
259 | }
|
---|
260 |
|
---|
261 | public void Normalize()
|
---|
262 | {
|
---|
263 | float f = 1.0f / Length();
|
---|
264 |
|
---|
265 | X *= f;
|
---|
266 | Y *= f;
|
---|
267 | Z *= f;
|
---|
268 | W *= f;
|
---|
269 | }
|
---|
270 |
|
---|
271 | public float Length() => FMath.Sqrt(SquaredLength());
|
---|
272 |
|
---|
273 | public float SquaredLength() => X * X + Y * Y + Z * Z + W * W;
|
---|
274 |
|
---|
275 | public bool Equals(Quaternion other) => X == other.X && Y == other.Y && Z == other.Z && W == other.W;
|
---|
276 |
|
---|
277 | public override bool Equals(object obj) => obj is Quaternion && Equals((Quaternion)obj);
|
---|
278 |
|
---|
279 | public override int GetHashCode() => X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode();
|
---|
280 |
|
---|
281 | public override string ToString() => $"{{{X} {Y} {Z} {W}}}";
|
---|
282 |
|
---|
283 | public Matrix ToMatrix()
|
---|
284 | {
|
---|
285 | float xx = X * X;
|
---|
286 | float yy = Y * Y;
|
---|
287 | float zz = Z * Z;
|
---|
288 | float xy = X * Y;
|
---|
289 | float zw = Z * W;
|
---|
290 | float zx = Z * X;
|
---|
291 | float yw = Y * W;
|
---|
292 | float yz = Y * Z;
|
---|
293 | float xw = X * W;
|
---|
294 |
|
---|
295 | Matrix m;
|
---|
296 |
|
---|
297 | m.M11 = 1.0f - 2.0f * (yy + zz);
|
---|
298 | m.M12 = 2.0f * (xy + zw);
|
---|
299 | m.M13 = 2.0f * (zx - yw);
|
---|
300 | m.M14 = 0.0f;
|
---|
301 |
|
---|
302 | m.M21 = 2.0f * (xy - zw);
|
---|
303 | m.M22 = 1.0f - 2.0f * (zz + xx);
|
---|
304 | m.M23 = 2.0f * (yz + xw);
|
---|
305 | m.M24 = 0.0f;
|
---|
306 |
|
---|
307 | m.M31 = 2.0f * (zx + yw);
|
---|
308 | m.M32 = 2.0f * (yz - xw);
|
---|
309 | m.M33 = 1.0f - 2.0f * (yy + xx);
|
---|
310 | m.M34 = 0.0f;
|
---|
311 |
|
---|
312 | m.M41 = 0.0f;
|
---|
313 | m.M42 = 0.0f;
|
---|
314 | m.M43 = 0.0f;
|
---|
315 | m.M44 = 1.0f;
|
---|
316 |
|
---|
317 | return m;
|
---|
318 | }
|
---|
319 |
|
---|
320 | public Vector4 ToVector4() => new Vector4(X, Y, Z, W);
|
---|
321 |
|
---|
322 | private static readonly Quaternion identity = new Quaternion(0.0f, 0.0f, 0.0f, 1.0f);
|
---|
323 |
|
---|
324 | public static Quaternion Identity => identity;
|
---|
325 | }
|
---|
326 | }
|
---|