[1050] | 1 | /* blast.c
|
---|
| 2 | * Copyright (C) 2003, 2012 Mark Adler
|
---|
| 3 | * For conditions of distribution and use, see copyright notice in blast.h
|
---|
| 4 | * version 1.2, 24 Oct 2012
|
---|
| 5 | *
|
---|
| 6 | * blast.c decompresses data compressed by the PKWare Compression Library.
|
---|
| 7 | * This function provides functionality similar to the explode() function of
|
---|
| 8 | * the PKWare library, hence the name "blast".
|
---|
| 9 | *
|
---|
| 10 | * This decompressor is based on the excellent format description provided by
|
---|
| 11 | * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the
|
---|
| 12 | * example Ben provided in the post is incorrect. The distance 110001 should
|
---|
| 13 | * instead be 111000. When corrected, the example byte stream becomes:
|
---|
| 14 | *
|
---|
| 15 | * 00 04 82 24 25 8f 80 7f
|
---|
| 16 | *
|
---|
| 17 | * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
|
---|
| 18 | */
|
---|
| 19 |
|
---|
| 20 | /*
|
---|
| 21 | * Change history:
|
---|
| 22 | *
|
---|
| 23 | * 1.0 12 Feb 2003 - First version
|
---|
| 24 | * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data
|
---|
| 25 | * 1.2 24 Oct 2012 - Add note about using binary mode in stdio
|
---|
| 26 | * - Fix comparisons of differently signed integers
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
|
---|
| 30 | #include "blast.h" /* prototype for blast() */
|
---|
| 31 |
|
---|
| 32 | #define local static /* for local function definitions */
|
---|
| 33 | #define MAXBITS 13 /* maximum code length */
|
---|
| 34 | #define MAXWIN 4096 /* maximum window size */
|
---|
| 35 |
|
---|
| 36 | /* input and output state */
|
---|
| 37 | struct state {
|
---|
| 38 | /* input state */
|
---|
| 39 | blast_in infun; /* input function provided by user */
|
---|
| 40 | void *inhow; /* opaque information passed to infun() */
|
---|
| 41 | unsigned char *in; /* next input location */
|
---|
| 42 | unsigned left; /* available input at in */
|
---|
| 43 | int bitbuf; /* bit buffer */
|
---|
| 44 | int bitcnt; /* number of bits in bit buffer */
|
---|
| 45 |
|
---|
| 46 | /* input limit error return state for bits() and decode() */
|
---|
| 47 | jmp_buf env;
|
---|
| 48 |
|
---|
| 49 | /* output state */
|
---|
| 50 | blast_out outfun; /* output function provided by user */
|
---|
| 51 | void *outhow; /* opaque information passed to outfun() */
|
---|
| 52 | unsigned next; /* index of next write location in out[] */
|
---|
| 53 | int first; /* true to check distances (for first 4K) */
|
---|
| 54 | unsigned char out[MAXWIN]; /* output buffer and sliding window */
|
---|
| 55 | };
|
---|
| 56 |
|
---|
| 57 | /*
|
---|
| 58 | * Return need bits from the input stream. This always leaves less than
|
---|
| 59 | * eight bits in the buffer. bits() works properly for need == 0.
|
---|
| 60 | *
|
---|
| 61 | * Format notes:
|
---|
| 62 | *
|
---|
| 63 | * - Bits are stored in bytes from the least significant bit to the most
|
---|
| 64 | * significant bit. Therefore bits are dropped from the bottom of the bit
|
---|
| 65 | * buffer, using shift right, and new bytes are appended to the top of the
|
---|
| 66 | * bit buffer, using shift left.
|
---|
| 67 | */
|
---|
| 68 | local int bits(struct state *s, int need)
|
---|
| 69 | {
|
---|
| 70 | int val; /* bit accumulator */
|
---|
| 71 |
|
---|
| 72 | /* load at least need bits into val */
|
---|
| 73 | val = s->bitbuf;
|
---|
| 74 | while (s->bitcnt < need) {
|
---|
| 75 | if (s->left == 0) {
|
---|
| 76 | s->left = s->infun(s->inhow, &(s->in));
|
---|
| 77 | if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
---|
| 78 | }
|
---|
| 79 | val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */
|
---|
| 80 | s->left--;
|
---|
| 81 | s->bitcnt += 8;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | /* drop need bits and update buffer, always zero to seven bits left */
|
---|
| 85 | s->bitbuf = val >> need;
|
---|
| 86 | s->bitcnt -= need;
|
---|
| 87 |
|
---|
| 88 | /* return need bits, zeroing the bits above that */
|
---|
| 89 | return val & ((1 << need) - 1);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | /*
|
---|
| 93 | * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
|
---|
| 94 | * each length, which for a canonical code are stepped through in order.
|
---|
| 95 | * symbol[] are the symbol values in canonical order, where the number of
|
---|
| 96 | * entries is the sum of the counts in count[]. The decoding process can be
|
---|
| 97 | * seen in the function decode() below.
|
---|
| 98 | */
|
---|
| 99 | struct huffman {
|
---|
| 100 | short *count; /* number of symbols of each length */
|
---|
| 101 | short *symbol; /* canonically ordered symbols */
|
---|
| 102 | };
|
---|
| 103 |
|
---|
| 104 | /*
|
---|
| 105 | * Decode a code from the stream s using huffman table h. Return the symbol or
|
---|
| 106 | * a negative value if there is an error. If all of the lengths are zero, i.e.
|
---|
| 107 | * an empty code, or if the code is incomplete and an invalid code is received,
|
---|
| 108 | * then -9 is returned after reading MAXBITS bits.
|
---|
| 109 | *
|
---|
| 110 | * Format notes:
|
---|
| 111 | *
|
---|
| 112 | * - The codes as stored in the compressed data are bit-reversed relative to
|
---|
| 113 | * a simple integer ordering of codes of the same lengths. Hence below the
|
---|
| 114 | * bits are pulled from the compressed data one at a time and used to
|
---|
| 115 | * build the code value reversed from what is in the stream in order to
|
---|
| 116 | * permit simple integer comparisons for decoding.
|
---|
| 117 | *
|
---|
| 118 | * - The first code for the shortest length is all ones. Subsequent codes of
|
---|
| 119 | * the same length are simply integer decrements of the previous code. When
|
---|
| 120 | * moving up a length, a one bit is appended to the code. For a complete
|
---|
| 121 | * code, the last code of the longest length will be all zeros. To support
|
---|
| 122 | * this ordering, the bits pulled during decoding are inverted to apply the
|
---|
| 123 | * more "natural" ordering starting with all zeros and incrementing.
|
---|
| 124 | */
|
---|
| 125 | local int decode(struct state *s, struct huffman *h)
|
---|
| 126 | {
|
---|
| 127 | int len; /* current number of bits in code */
|
---|
| 128 | int code; /* len bits being decoded */
|
---|
| 129 | int first; /* first code of length len */
|
---|
| 130 | int count; /* number of codes of length len */
|
---|
| 131 | int index; /* index of first code of length len in symbol table */
|
---|
| 132 | int bitbuf; /* bits from stream */
|
---|
| 133 | int left; /* bits left in next or left to process */
|
---|
| 134 | short *next; /* next number of codes */
|
---|
| 135 |
|
---|
| 136 | bitbuf = s->bitbuf;
|
---|
| 137 | left = s->bitcnt;
|
---|
| 138 | code = first = index = 0;
|
---|
| 139 | len = 1;
|
---|
| 140 | next = h->count + 1;
|
---|
| 141 | while (1) {
|
---|
| 142 | while (left--) {
|
---|
| 143 | code |= (bitbuf & 1) ^ 1; /* invert code */
|
---|
| 144 | bitbuf >>= 1;
|
---|
| 145 | count = *next++;
|
---|
| 146 | if (code < first + count) { /* if length len, return symbol */
|
---|
| 147 | s->bitbuf = bitbuf;
|
---|
| 148 | s->bitcnt = (s->bitcnt - len) & 7;
|
---|
| 149 | return h->symbol[index + (code - first)];
|
---|
| 150 | }
|
---|
| 151 | index += count; /* else update for next length */
|
---|
| 152 | first += count;
|
---|
| 153 | first <<= 1;
|
---|
| 154 | code <<= 1;
|
---|
| 155 | len++;
|
---|
| 156 | }
|
---|
| 157 | left = (MAXBITS+1) - len;
|
---|
| 158 | if (left == 0) break;
|
---|
| 159 | if (s->left == 0) {
|
---|
| 160 | s->left = s->infun(s->inhow, &(s->in));
|
---|
| 161 | if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
---|
| 162 | }
|
---|
| 163 | bitbuf = *(s->in)++;
|
---|
| 164 | s->left--;
|
---|
| 165 | if (left > 8) left = 8;
|
---|
| 166 | }
|
---|
| 167 | return -9; /* ran out of codes */
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | /*
|
---|
| 171 | * Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
---|
| 172 | * count (high four bits + 1) and a code length (low four bits), generate the
|
---|
| 173 | * list of code lengths. This compaction reduces the size of the object code.
|
---|
| 174 | * Then given the list of code lengths length[0..n-1] representing a canonical
|
---|
| 175 | * Huffman code for n symbols, construct the tables required to decode those
|
---|
| 176 | * codes. Those tables are the number of codes of each length, and the symbols
|
---|
| 177 | * sorted by length, retaining their original order within each length. The
|
---|
| 178 | * return value is zero for a complete code set, negative for an over-
|
---|
| 179 | * subscribed code set, and positive for an incomplete code set. The tables
|
---|
| 180 | * can be used if the return value is zero or positive, but they cannot be used
|
---|
| 181 | * if the return value is negative. If the return value is zero, it is not
|
---|
| 182 | * possible for decode() using that table to return an error--any stream of
|
---|
| 183 | * enough bits will resolve to a symbol. If the return value is positive, then
|
---|
| 184 | * it is possible for decode() using that table to return an error for received
|
---|
| 185 | * codes past the end of the incomplete lengths.
|
---|
| 186 | */
|
---|
| 187 | local int construct(struct huffman *h, const unsigned char *rep, int n)
|
---|
| 188 | {
|
---|
| 189 | int symbol; /* current symbol when stepping through length[] */
|
---|
| 190 | int len; /* current length when stepping through h->count[] */
|
---|
| 191 | int left; /* number of possible codes left of current length */
|
---|
| 192 | short offs[MAXBITS+1]; /* offsets in symbol table for each length */
|
---|
| 193 | short length[256]; /* code lengths */
|
---|
| 194 |
|
---|
| 195 | /* convert compact repeat counts into symbol bit length list */
|
---|
| 196 | symbol = 0;
|
---|
| 197 | do {
|
---|
| 198 | len = *rep++;
|
---|
| 199 | left = (len >> 4) + 1;
|
---|
| 200 | len &= 15;
|
---|
| 201 | do {
|
---|
| 202 | length[symbol++] = len;
|
---|
| 203 | } while (--left);
|
---|
| 204 | } while (--n);
|
---|
| 205 | n = symbol;
|
---|
| 206 |
|
---|
| 207 | /* count number of codes of each length */
|
---|
| 208 | for (len = 0; len <= MAXBITS; len++)
|
---|
| 209 | h->count[len] = 0;
|
---|
| 210 | for (symbol = 0; symbol < n; symbol++)
|
---|
| 211 | (h->count[length[symbol]])++; /* assumes lengths are within bounds */
|
---|
| 212 | if (h->count[0] == n) /* no codes! */
|
---|
| 213 | return 0; /* complete, but decode() will fail */
|
---|
| 214 |
|
---|
| 215 | /* check for an over-subscribed or incomplete set of lengths */
|
---|
| 216 | left = 1; /* one possible code of zero length */
|
---|
| 217 | for (len = 1; len <= MAXBITS; len++) {
|
---|
| 218 | left <<= 1; /* one more bit, double codes left */
|
---|
| 219 | left -= h->count[len]; /* deduct count from possible codes */
|
---|
| 220 | if (left < 0) return left; /* over-subscribed--return negative */
|
---|
| 221 | } /* left > 0 means incomplete */
|
---|
| 222 |
|
---|
| 223 | /* generate offsets into symbol table for each length for sorting */
|
---|
| 224 | offs[1] = 0;
|
---|
| 225 | for (len = 1; len < MAXBITS; len++)
|
---|
| 226 | offs[len + 1] = offs[len] + h->count[len];
|
---|
| 227 |
|
---|
| 228 | /*
|
---|
| 229 | * put symbols in table sorted by length, by symbol order within each
|
---|
| 230 | * length
|
---|
| 231 | */
|
---|
| 232 | for (symbol = 0; symbol < n; symbol++)
|
---|
| 233 | if (length[symbol] != 0)
|
---|
| 234 | h->symbol[offs[length[symbol]]++] = symbol;
|
---|
| 235 |
|
---|
| 236 | /* return zero for complete set, positive for incomplete set */
|
---|
| 237 | return left;
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | /*
|
---|
| 241 | * Decode PKWare Compression Library stream.
|
---|
| 242 | *
|
---|
| 243 | * Format notes:
|
---|
| 244 | *
|
---|
| 245 | * - First byte is 0 if literals are uncoded or 1 if they are coded. Second
|
---|
| 246 | * byte is 4, 5, or 6 for the number of extra bits in the distance code.
|
---|
| 247 | * This is the base-2 logarithm of the dictionary size minus six.
|
---|
| 248 | *
|
---|
| 249 | * - Compressed data is a combination of literals and length/distance pairs
|
---|
| 250 | * terminated by an end code. Literals are either Huffman coded or
|
---|
| 251 | * uncoded bytes. A length/distance pair is a coded length followed by a
|
---|
| 252 | * coded distance to represent a string that occurs earlier in the
|
---|
| 253 | * uncompressed data that occurs again at the current location.
|
---|
| 254 | *
|
---|
| 255 | * - A bit preceding a literal or length/distance pair indicates which comes
|
---|
| 256 | * next, 0 for literals, 1 for length/distance.
|
---|
| 257 | *
|
---|
| 258 | * - If literals are uncoded, then the next eight bits are the literal, in the
|
---|
| 259 | * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
|
---|
| 260 | * no bit reversal is needed for either the length extra bits or the distance
|
---|
| 261 | * extra bits.
|
---|
| 262 | *
|
---|
| 263 | * - Literal bytes are simply written to the output. A length/distance pair is
|
---|
| 264 | * an instruction to copy previously uncompressed bytes to the output. The
|
---|
| 265 | * copy is from distance bytes back in the output stream, copying for length
|
---|
| 266 | * bytes.
|
---|
| 267 | *
|
---|
| 268 | * - Distances pointing before the beginning of the output data are not
|
---|
| 269 | * permitted.
|
---|
| 270 | *
|
---|
| 271 | * - Overlapped copies, where the length is greater than the distance, are
|
---|
| 272 | * allowed and common. For example, a distance of one and a length of 518
|
---|
| 273 | * simply copies the last byte 518 times. A distance of four and a length of
|
---|
| 274 | * twelve copies the last four bytes three times. A simple forward copy
|
---|
| 275 | * ignoring whether the length is greater than the distance or not implements
|
---|
| 276 | * this correctly.
|
---|
| 277 | */
|
---|
| 278 | local int decomp(struct state *s)
|
---|
| 279 | {
|
---|
| 280 | int lit; /* true if literals are coded */
|
---|
| 281 | int dict; /* log2(dictionary size) - 6 */
|
---|
| 282 | int symbol; /* decoded symbol, extra bits for distance */
|
---|
| 283 | int len; /* length for copy */
|
---|
| 284 | unsigned dist; /* distance for copy */
|
---|
| 285 | int copy; /* copy counter */
|
---|
| 286 | unsigned char *from, *to; /* copy pointers */
|
---|
| 287 | static int virgin = 1; /* build tables once */
|
---|
| 288 | static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */
|
---|
| 289 | static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */
|
---|
| 290 | static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */
|
---|
| 291 | static struct huffman litcode = {litcnt, litsym}; /* length code */
|
---|
| 292 | static struct huffman lencode = {lencnt, lensym}; /* length code */
|
---|
| 293 | static struct huffman distcode = {distcnt, distsym};/* distance code */
|
---|
| 294 | /* bit lengths of literal codes */
|
---|
| 295 | static const unsigned char litlen[] = {
|
---|
| 296 | 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
|
---|
| 297 | 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
---|
| 298 | 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
---|
| 299 | 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
---|
| 300 | 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
|
---|
| 301 | 44, 173};
|
---|
| 302 | /* bit lengths of length codes 0..15 */
|
---|
| 303 | static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
|
---|
| 304 | /* bit lengths of distance codes 0..63 */
|
---|
| 305 | static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
|
---|
| 306 | static const short base[16] = { /* base for length codes */
|
---|
| 307 | 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
|
---|
| 308 | static const char extra[16] = { /* extra bits for length codes */
|
---|
| 309 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
|
---|
| 310 |
|
---|
| 311 | /* set up decoding tables (once--might not be thread-safe) */
|
---|
| 312 | if (virgin) {
|
---|
| 313 | construct(&litcode, litlen, sizeof(litlen));
|
---|
| 314 | construct(&lencode, lenlen, sizeof(lenlen));
|
---|
| 315 | construct(&distcode, distlen, sizeof(distlen));
|
---|
| 316 | virgin = 0;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | /* read header */
|
---|
| 320 | lit = bits(s, 8);
|
---|
| 321 | if (lit > 1) return -1;
|
---|
| 322 | dict = bits(s, 8);
|
---|
| 323 | if (dict < 4 || dict > 6) return -2;
|
---|
| 324 |
|
---|
| 325 | /* decode literals and length/distance pairs */
|
---|
| 326 | do {
|
---|
| 327 | if (bits(s, 1)) {
|
---|
| 328 | /* get length */
|
---|
| 329 | symbol = decode(s, &lencode);
|
---|
| 330 | len = base[symbol] + bits(s, extra[symbol]);
|
---|
| 331 | if (len == 519) break; /* end code */
|
---|
| 332 |
|
---|
| 333 | /* get distance */
|
---|
| 334 | symbol = len == 2 ? 2 : dict;
|
---|
| 335 | dist = decode(s, &distcode) << symbol;
|
---|
| 336 | dist += bits(s, symbol);
|
---|
| 337 | dist++;
|
---|
| 338 | if (s->first && dist > s->next)
|
---|
| 339 | return -3; /* distance too far back */
|
---|
| 340 |
|
---|
| 341 | /* copy length bytes from distance bytes back */
|
---|
| 342 | do {
|
---|
| 343 | to = s->out + s->next;
|
---|
| 344 | from = to - dist;
|
---|
| 345 | copy = MAXWIN;
|
---|
| 346 | if (s->next < dist) {
|
---|
| 347 | from += copy;
|
---|
| 348 | copy = dist;
|
---|
| 349 | }
|
---|
| 350 | copy -= s->next;
|
---|
| 351 | if (copy > len) copy = len;
|
---|
| 352 | len -= copy;
|
---|
| 353 | s->next += copy;
|
---|
| 354 | do {
|
---|
| 355 | *to++ = *from++;
|
---|
| 356 | } while (--copy);
|
---|
| 357 | if (s->next == MAXWIN) {
|
---|
| 358 | if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
---|
| 359 | s->next = 0;
|
---|
| 360 | s->first = 0;
|
---|
| 361 | }
|
---|
| 362 | } while (len != 0);
|
---|
| 363 | }
|
---|
| 364 | else {
|
---|
| 365 | /* get literal and write it */
|
---|
| 366 | symbol = lit ? decode(s, &litcode) : bits(s, 8);
|
---|
| 367 | s->out[s->next++] = symbol;
|
---|
| 368 | if (s->next == MAXWIN) {
|
---|
| 369 | if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
---|
| 370 | s->next = 0;
|
---|
| 371 | s->first = 0;
|
---|
| 372 | }
|
---|
| 373 | }
|
---|
| 374 | } while (1);
|
---|
| 375 | return 0;
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | /* See comments in blast.h */
|
---|
| 379 | int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
|
---|
| 380 | {
|
---|
| 381 | struct state s; /* input/output state */
|
---|
| 382 | int err; /* return value */
|
---|
| 383 |
|
---|
| 384 | /* initialize input state */
|
---|
| 385 | s.infun = infun;
|
---|
| 386 | s.inhow = inhow;
|
---|
| 387 | s.left = 0;
|
---|
| 388 | s.bitbuf = 0;
|
---|
| 389 | s.bitcnt = 0;
|
---|
| 390 |
|
---|
| 391 | /* initialize output state */
|
---|
| 392 | s.outfun = outfun;
|
---|
| 393 | s.outhow = outhow;
|
---|
| 394 | s.next = 0;
|
---|
| 395 | s.first = 1;
|
---|
| 396 |
|
---|
| 397 | /* return if bits() or decode() tries to read past available input */
|
---|
| 398 | if (setjmp(s.env) != 0) /* if came back here via longjmp(), */
|
---|
| 399 | err = 2; /* then skip decomp(), return error */
|
---|
| 400 | else
|
---|
| 401 | err = decomp(&s); /* decompress */
|
---|
| 402 |
|
---|
| 403 | /* write any leftover output and update the error code if needed */
|
---|
| 404 | if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
|
---|
| 405 | err = 1;
|
---|
| 406 | return err;
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 | #ifdef TEST
|
---|
| 410 | /* Example of how to use blast() */
|
---|
| 411 | #include <stdio.h>
|
---|
| 412 | #include <stdlib.h>
|
---|
| 413 |
|
---|
| 414 | #define CHUNK 16384
|
---|
| 415 |
|
---|
| 416 | local unsigned inf(void *how, unsigned char **buf)
|
---|
| 417 | {
|
---|
| 418 | static unsigned char hold[CHUNK];
|
---|
| 419 |
|
---|
| 420 | *buf = hold;
|
---|
| 421 | return fread(hold, 1, CHUNK, (FILE *)how);
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | local int outf(void *how, unsigned char *buf, unsigned len)
|
---|
| 425 | {
|
---|
| 426 | return fwrite(buf, 1, len, (FILE *)how) != len;
|
---|
| 427 | }
|
---|
| 428 |
|
---|
| 429 | /* Decompress a PKWare Compression Library stream from stdin to stdout */
|
---|
| 430 | int main(void)
|
---|
| 431 | {
|
---|
| 432 | int ret, n;
|
---|
| 433 |
|
---|
| 434 | /* decompress to stdout */
|
---|
| 435 | ret = blast(inf, stdin, outf, stdout);
|
---|
| 436 | if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
|
---|
| 437 |
|
---|
| 438 | /* see if there are any leftover bytes */
|
---|
| 439 | n = 0;
|
---|
| 440 | while (getchar() != EOF) n++;
|
---|
| 441 | if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
|
---|
| 442 |
|
---|
| 443 | /* return blast() error code */
|
---|
| 444 | return ret;
|
---|
| 445 | }
|
---|
| 446 | #endif
|
---|