[1050] | 1 | /* inftree9.c -- generate Huffman trees for efficient decoding
|
---|
| 2 | * Copyright (C) 1995-2013 Mark Adler
|
---|
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
| 4 | */
|
---|
| 5 |
|
---|
| 6 | #include "zutil.h"
|
---|
| 7 | #include "inftree9.h"
|
---|
| 8 |
|
---|
| 9 | #define MAXBITS 15
|
---|
| 10 |
|
---|
| 11 | const char inflate9_copyright[] =
|
---|
| 12 | " inflate9 1.2.8 Copyright 1995-2013 Mark Adler ";
|
---|
| 13 | /*
|
---|
| 14 | If you use the zlib library in a product, an acknowledgment is welcome
|
---|
| 15 | in the documentation of your product. If for some reason you cannot
|
---|
| 16 | include such an acknowledgment, I would appreciate that you keep this
|
---|
| 17 | copyright string in the executable of your product.
|
---|
| 18 | */
|
---|
| 19 |
|
---|
| 20 | /*
|
---|
| 21 | Build a set of tables to decode the provided canonical Huffman code.
|
---|
| 22 | The code lengths are lens[0..codes-1]. The result starts at *table,
|
---|
| 23 | whose indices are 0..2^bits-1. work is a writable array of at least
|
---|
| 24 | lens shorts, which is used as a work area. type is the type of code
|
---|
| 25 | to be generated, CODES, LENS, or DISTS. On return, zero is success,
|
---|
| 26 | -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
|
---|
| 27 | on return points to the next available entry's address. bits is the
|
---|
| 28 | requested root table index bits, and on return it is the actual root
|
---|
| 29 | table index bits. It will differ if the request is greater than the
|
---|
| 30 | longest code or if it is less than the shortest code.
|
---|
| 31 | */
|
---|
| 32 | int inflate_table9(type, lens, codes, table, bits, work)
|
---|
| 33 | codetype type;
|
---|
| 34 | unsigned short FAR *lens;
|
---|
| 35 | unsigned codes;
|
---|
| 36 | code FAR * FAR *table;
|
---|
| 37 | unsigned FAR *bits;
|
---|
| 38 | unsigned short FAR *work;
|
---|
| 39 | {
|
---|
| 40 | unsigned len; /* a code's length in bits */
|
---|
| 41 | unsigned sym; /* index of code symbols */
|
---|
| 42 | unsigned min, max; /* minimum and maximum code lengths */
|
---|
| 43 | unsigned root; /* number of index bits for root table */
|
---|
| 44 | unsigned curr; /* number of index bits for current table */
|
---|
| 45 | unsigned drop; /* code bits to drop for sub-table */
|
---|
| 46 | int left; /* number of prefix codes available */
|
---|
| 47 | unsigned used; /* code entries in table used */
|
---|
| 48 | unsigned huff; /* Huffman code */
|
---|
| 49 | unsigned incr; /* for incrementing code, index */
|
---|
| 50 | unsigned fill; /* index for replicating entries */
|
---|
| 51 | unsigned low; /* low bits for current root entry */
|
---|
| 52 | unsigned mask; /* mask for low root bits */
|
---|
| 53 | code this; /* table entry for duplication */
|
---|
| 54 | code FAR *next; /* next available space in table */
|
---|
| 55 | const unsigned short FAR *base; /* base value table to use */
|
---|
| 56 | const unsigned short FAR *extra; /* extra bits table to use */
|
---|
| 57 | int end; /* use base and extra for symbol > end */
|
---|
| 58 | unsigned short count[MAXBITS+1]; /* number of codes of each length */
|
---|
| 59 | unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
|
---|
| 60 | static const unsigned short lbase[31] = { /* Length codes 257..285 base */
|
---|
| 61 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17,
|
---|
| 62 | 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115,
|
---|
| 63 | 131, 163, 195, 227, 3, 0, 0};
|
---|
| 64 | static const unsigned short lext[31] = { /* Length codes 257..285 extra */
|
---|
| 65 | 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129,
|
---|
| 66 | 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132,
|
---|
| 67 | 133, 133, 133, 133, 144, 72, 78};
|
---|
| 68 | static const unsigned short dbase[32] = { /* Distance codes 0..31 base */
|
---|
| 69 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49,
|
---|
| 70 | 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073,
|
---|
| 71 | 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153};
|
---|
| 72 | static const unsigned short dext[32] = { /* Distance codes 0..31 extra */
|
---|
| 73 | 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
|
---|
| 74 | 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138,
|
---|
| 75 | 139, 139, 140, 140, 141, 141, 142, 142};
|
---|
| 76 |
|
---|
| 77 | /*
|
---|
| 78 | Process a set of code lengths to create a canonical Huffman code. The
|
---|
| 79 | code lengths are lens[0..codes-1]. Each length corresponds to the
|
---|
| 80 | symbols 0..codes-1. The Huffman code is generated by first sorting the
|
---|
| 81 | symbols by length from short to long, and retaining the symbol order
|
---|
| 82 | for codes with equal lengths. Then the code starts with all zero bits
|
---|
| 83 | for the first code of the shortest length, and the codes are integer
|
---|
| 84 | increments for the same length, and zeros are appended as the length
|
---|
| 85 | increases. For the deflate format, these bits are stored backwards
|
---|
| 86 | from their more natural integer increment ordering, and so when the
|
---|
| 87 | decoding tables are built in the large loop below, the integer codes
|
---|
| 88 | are incremented backwards.
|
---|
| 89 |
|
---|
| 90 | This routine assumes, but does not check, that all of the entries in
|
---|
| 91 | lens[] are in the range 0..MAXBITS. The caller must assure this.
|
---|
| 92 | 1..MAXBITS is interpreted as that code length. zero means that that
|
---|
| 93 | symbol does not occur in this code.
|
---|
| 94 |
|
---|
| 95 | The codes are sorted by computing a count of codes for each length,
|
---|
| 96 | creating from that a table of starting indices for each length in the
|
---|
| 97 | sorted table, and then entering the symbols in order in the sorted
|
---|
| 98 | table. The sorted table is work[], with that space being provided by
|
---|
| 99 | the caller.
|
---|
| 100 |
|
---|
| 101 | The length counts are used for other purposes as well, i.e. finding
|
---|
| 102 | the minimum and maximum length codes, determining if there are any
|
---|
| 103 | codes at all, checking for a valid set of lengths, and looking ahead
|
---|
| 104 | at length counts to determine sub-table sizes when building the
|
---|
| 105 | decoding tables.
|
---|
| 106 | */
|
---|
| 107 |
|
---|
| 108 | /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
|
---|
| 109 | for (len = 0; len <= MAXBITS; len++)
|
---|
| 110 | count[len] = 0;
|
---|
| 111 | for (sym = 0; sym < codes; sym++)
|
---|
| 112 | count[lens[sym]]++;
|
---|
| 113 |
|
---|
| 114 | /* bound code lengths, force root to be within code lengths */
|
---|
| 115 | root = *bits;
|
---|
| 116 | for (max = MAXBITS; max >= 1; max--)
|
---|
| 117 | if (count[max] != 0) break;
|
---|
| 118 | if (root > max) root = max;
|
---|
| 119 | if (max == 0) return -1; /* no codes! */
|
---|
| 120 | for (min = 1; min <= MAXBITS; min++)
|
---|
| 121 | if (count[min] != 0) break;
|
---|
| 122 | if (root < min) root = min;
|
---|
| 123 |
|
---|
| 124 | /* check for an over-subscribed or incomplete set of lengths */
|
---|
| 125 | left = 1;
|
---|
| 126 | for (len = 1; len <= MAXBITS; len++) {
|
---|
| 127 | left <<= 1;
|
---|
| 128 | left -= count[len];
|
---|
| 129 | if (left < 0) return -1; /* over-subscribed */
|
---|
| 130 | }
|
---|
| 131 | if (left > 0 && (type == CODES || max != 1))
|
---|
| 132 | return -1; /* incomplete set */
|
---|
| 133 |
|
---|
| 134 | /* generate offsets into symbol table for each length for sorting */
|
---|
| 135 | offs[1] = 0;
|
---|
| 136 | for (len = 1; len < MAXBITS; len++)
|
---|
| 137 | offs[len + 1] = offs[len] + count[len];
|
---|
| 138 |
|
---|
| 139 | /* sort symbols by length, by symbol order within each length */
|
---|
| 140 | for (sym = 0; sym < codes; sym++)
|
---|
| 141 | if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
|
---|
| 142 |
|
---|
| 143 | /*
|
---|
| 144 | Create and fill in decoding tables. In this loop, the table being
|
---|
| 145 | filled is at next and has curr index bits. The code being used is huff
|
---|
| 146 | with length len. That code is converted to an index by dropping drop
|
---|
| 147 | bits off of the bottom. For codes where len is less than drop + curr,
|
---|
| 148 | those top drop + curr - len bits are incremented through all values to
|
---|
| 149 | fill the table with replicated entries.
|
---|
| 150 |
|
---|
| 151 | root is the number of index bits for the root table. When len exceeds
|
---|
| 152 | root, sub-tables are created pointed to by the root entry with an index
|
---|
| 153 | of the low root bits of huff. This is saved in low to check for when a
|
---|
| 154 | new sub-table should be started. drop is zero when the root table is
|
---|
| 155 | being filled, and drop is root when sub-tables are being filled.
|
---|
| 156 |
|
---|
| 157 | When a new sub-table is needed, it is necessary to look ahead in the
|
---|
| 158 | code lengths to determine what size sub-table is needed. The length
|
---|
| 159 | counts are used for this, and so count[] is decremented as codes are
|
---|
| 160 | entered in the tables.
|
---|
| 161 |
|
---|
| 162 | used keeps track of how many table entries have been allocated from the
|
---|
| 163 | provided *table space. It is checked for LENS and DIST tables against
|
---|
| 164 | the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
|
---|
| 165 | the initial root table size constants. See the comments in inftree9.h
|
---|
| 166 | for more information.
|
---|
| 167 |
|
---|
| 168 | sym increments through all symbols, and the loop terminates when
|
---|
| 169 | all codes of length max, i.e. all codes, have been processed. This
|
---|
| 170 | routine permits incomplete codes, so another loop after this one fills
|
---|
| 171 | in the rest of the decoding tables with invalid code markers.
|
---|
| 172 | */
|
---|
| 173 |
|
---|
| 174 | /* set up for code type */
|
---|
| 175 | switch (type) {
|
---|
| 176 | case CODES:
|
---|
| 177 | base = extra = work; /* dummy value--not used */
|
---|
| 178 | end = 19;
|
---|
| 179 | break;
|
---|
| 180 | case LENS:
|
---|
| 181 | base = lbase;
|
---|
| 182 | base -= 257;
|
---|
| 183 | extra = lext;
|
---|
| 184 | extra -= 257;
|
---|
| 185 | end = 256;
|
---|
| 186 | break;
|
---|
| 187 | default: /* DISTS */
|
---|
| 188 | base = dbase;
|
---|
| 189 | extra = dext;
|
---|
| 190 | end = -1;
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /* initialize state for loop */
|
---|
| 194 | huff = 0; /* starting code */
|
---|
| 195 | sym = 0; /* starting code symbol */
|
---|
| 196 | len = min; /* starting code length */
|
---|
| 197 | next = *table; /* current table to fill in */
|
---|
| 198 | curr = root; /* current table index bits */
|
---|
| 199 | drop = 0; /* current bits to drop from code for index */
|
---|
| 200 | low = (unsigned)(-1); /* trigger new sub-table when len > root */
|
---|
| 201 | used = 1U << root; /* use root table entries */
|
---|
| 202 | mask = used - 1; /* mask for comparing low */
|
---|
| 203 |
|
---|
| 204 | /* check available table space */
|
---|
| 205 | if ((type == LENS && used >= ENOUGH_LENS) ||
|
---|
| 206 | (type == DISTS && used >= ENOUGH_DISTS))
|
---|
| 207 | return 1;
|
---|
| 208 |
|
---|
| 209 | /* process all codes and make table entries */
|
---|
| 210 | for (;;) {
|
---|
| 211 | /* create table entry */
|
---|
| 212 | this.bits = (unsigned char)(len - drop);
|
---|
| 213 | if ((int)(work[sym]) < end) {
|
---|
| 214 | this.op = (unsigned char)0;
|
---|
| 215 | this.val = work[sym];
|
---|
| 216 | }
|
---|
| 217 | else if ((int)(work[sym]) > end) {
|
---|
| 218 | this.op = (unsigned char)(extra[work[sym]]);
|
---|
| 219 | this.val = base[work[sym]];
|
---|
| 220 | }
|
---|
| 221 | else {
|
---|
| 222 | this.op = (unsigned char)(32 + 64); /* end of block */
|
---|
| 223 | this.val = 0;
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | /* replicate for those indices with low len bits equal to huff */
|
---|
| 227 | incr = 1U << (len - drop);
|
---|
| 228 | fill = 1U << curr;
|
---|
| 229 | do {
|
---|
| 230 | fill -= incr;
|
---|
| 231 | next[(huff >> drop) + fill] = this;
|
---|
| 232 | } while (fill != 0);
|
---|
| 233 |
|
---|
| 234 | /* backwards increment the len-bit code huff */
|
---|
| 235 | incr = 1U << (len - 1);
|
---|
| 236 | while (huff & incr)
|
---|
| 237 | incr >>= 1;
|
---|
| 238 | if (incr != 0) {
|
---|
| 239 | huff &= incr - 1;
|
---|
| 240 | huff += incr;
|
---|
| 241 | }
|
---|
| 242 | else
|
---|
| 243 | huff = 0;
|
---|
| 244 |
|
---|
| 245 | /* go to next symbol, update count, len */
|
---|
| 246 | sym++;
|
---|
| 247 | if (--(count[len]) == 0) {
|
---|
| 248 | if (len == max) break;
|
---|
| 249 | len = lens[work[sym]];
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | /* create new sub-table if needed */
|
---|
| 253 | if (len > root && (huff & mask) != low) {
|
---|
| 254 | /* if first time, transition to sub-tables */
|
---|
| 255 | if (drop == 0)
|
---|
| 256 | drop = root;
|
---|
| 257 |
|
---|
| 258 | /* increment past last table */
|
---|
| 259 | next += 1U << curr;
|
---|
| 260 |
|
---|
| 261 | /* determine length of next table */
|
---|
| 262 | curr = len - drop;
|
---|
| 263 | left = (int)(1 << curr);
|
---|
| 264 | while (curr + drop < max) {
|
---|
| 265 | left -= count[curr + drop];
|
---|
| 266 | if (left <= 0) break;
|
---|
| 267 | curr++;
|
---|
| 268 | left <<= 1;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | /* check for enough space */
|
---|
| 272 | used += 1U << curr;
|
---|
| 273 | if ((type == LENS && used >= ENOUGH_LENS) ||
|
---|
| 274 | (type == DISTS && used >= ENOUGH_DISTS))
|
---|
| 275 | return 1;
|
---|
| 276 |
|
---|
| 277 | /* point entry in root table to sub-table */
|
---|
| 278 | low = huff & mask;
|
---|
| 279 | (*table)[low].op = (unsigned char)curr;
|
---|
| 280 | (*table)[low].bits = (unsigned char)root;
|
---|
| 281 | (*table)[low].val = (unsigned short)(next - *table);
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | /*
|
---|
| 286 | Fill in rest of table for incomplete codes. This loop is similar to the
|
---|
| 287 | loop above in incrementing huff for table indices. It is assumed that
|
---|
| 288 | len is equal to curr + drop, so there is no loop needed to increment
|
---|
| 289 | through high index bits. When the current sub-table is filled, the loop
|
---|
| 290 | drops back to the root table to fill in any remaining entries there.
|
---|
| 291 | */
|
---|
| 292 | this.op = (unsigned char)64; /* invalid code marker */
|
---|
| 293 | this.bits = (unsigned char)(len - drop);
|
---|
| 294 | this.val = (unsigned short)0;
|
---|
| 295 | while (huff != 0) {
|
---|
| 296 | /* when done with sub-table, drop back to root table */
|
---|
| 297 | if (drop != 0 && (huff & mask) != low) {
|
---|
| 298 | drop = 0;
|
---|
| 299 | len = root;
|
---|
| 300 | next = *table;
|
---|
| 301 | curr = root;
|
---|
| 302 | this.bits = (unsigned char)len;
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | /* put invalid code marker in table */
|
---|
| 306 | next[huff >> drop] = this;
|
---|
| 307 |
|
---|
| 308 | /* backwards increment the len-bit code huff */
|
---|
| 309 | incr = 1U << (len - 1);
|
---|
| 310 | while (huff & incr)
|
---|
| 311 | incr >>= 1;
|
---|
| 312 | if (incr != 0) {
|
---|
| 313 | huff &= incr - 1;
|
---|
| 314 | huff += incr;
|
---|
| 315 | }
|
---|
| 316 | else
|
---|
| 317 | huff = 0;
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | /* set return parameters */
|
---|
| 321 | *table += used;
|
---|
| 322 | *bits = root;
|
---|
| 323 | return 0;
|
---|
| 324 | }
|
---|