1 | /* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
---|
2 | * all possible valid and complete Huffman codes, subject to a length limit.
|
---|
3 | * Copyright (C) 2007, 2008, 2012 Mark Adler
|
---|
4 | * Version 1.4 18 August 2012 Mark Adler
|
---|
5 | */
|
---|
6 |
|
---|
7 | /* Version history:
|
---|
8 | 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
|
---|
9 | 1.1 4 Jan 2007 Use faster incremental table usage computation
|
---|
10 | Prune examine() search on previously visited states
|
---|
11 | 1.2 5 Jan 2007 Comments clean up
|
---|
12 | As inflate does, decrease root for short codes
|
---|
13 | Refuse cases where inflate would increase root
|
---|
14 | 1.3 17 Feb 2008 Add argument for initial root table size
|
---|
15 | Fix bug for initial root table size == max - 1
|
---|
16 | Use a macro to compute the history index
|
---|
17 | 1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
|
---|
18 | Clean up comparisons of different types
|
---|
19 | Clean up code indentation
|
---|
20 | */
|
---|
21 |
|
---|
22 | /*
|
---|
23 | Examine all possible Huffman codes for a given number of symbols and a
|
---|
24 | maximum code length in bits to determine the maximum table size for zilb's
|
---|
25 | inflate. Only complete Huffman codes are counted.
|
---|
26 |
|
---|
27 | Two codes are considered distinct if the vectors of the number of codes per
|
---|
28 | length are not identical. So permutations of the symbol assignments result
|
---|
29 | in the same code for the counting, as do permutations of the assignments of
|
---|
30 | the bit values to the codes (i.e. only canonical codes are counted).
|
---|
31 |
|
---|
32 | We build a code from shorter to longer lengths, determining how many symbols
|
---|
33 | are coded at each length. At each step, we have how many symbols remain to
|
---|
34 | be coded, what the last code length used was, and how many bit patterns of
|
---|
35 | that length remain unused. Then we add one to the code length and double the
|
---|
36 | number of unused patterns to graduate to the next code length. We then
|
---|
37 | assign all portions of the remaining symbols to that code length that
|
---|
38 | preserve the properties of a correct and eventually complete code. Those
|
---|
39 | properties are: we cannot use more bit patterns than are available; and when
|
---|
40 | all the symbols are used, there are exactly zero possible bit patterns
|
---|
41 | remaining.
|
---|
42 |
|
---|
43 | The inflate Huffman decoding algorithm uses two-level lookup tables for
|
---|
44 | speed. There is a single first-level table to decode codes up to root bits
|
---|
45 | in length (root == 9 in the current inflate implementation). The table
|
---|
46 | has 1 << root entries and is indexed by the next root bits of input. Codes
|
---|
47 | shorter than root bits have replicated table entries, so that the correct
|
---|
48 | entry is pointed to regardless of the bits that follow the short code. If
|
---|
49 | the code is longer than root bits, then the table entry points to a second-
|
---|
50 | level table. The size of that table is determined by the longest code with
|
---|
51 | that root-bit prefix. If that longest code has length len, then the table
|
---|
52 | has size 1 << (len - root), to index the remaining bits in that set of
|
---|
53 | codes. Each subsequent root-bit prefix then has its own sub-table. The
|
---|
54 | total number of table entries required by the code is calculated
|
---|
55 | incrementally as the number of codes at each bit length is populated. When
|
---|
56 | all of the codes are shorter than root bits, then root is reduced to the
|
---|
57 | longest code length, resulting in a single, smaller, one-level table.
|
---|
58 |
|
---|
59 | The inflate algorithm also provides for small values of root (relative to
|
---|
60 | the log2 of the number of symbols), where the shortest code has more bits
|
---|
61 | than root. In that case, root is increased to the length of the shortest
|
---|
62 | code. This program, by design, does not handle that case, so it is verified
|
---|
63 | that the number of symbols is less than 2^(root + 1).
|
---|
64 |
|
---|
65 | In order to speed up the examination (by about ten orders of magnitude for
|
---|
66 | the default arguments), the intermediate states in the build-up of a code
|
---|
67 | are remembered and previously visited branches are pruned. The memory
|
---|
68 | required for this will increase rapidly with the total number of symbols and
|
---|
69 | the maximum code length in bits. However this is a very small price to pay
|
---|
70 | for the vast speedup.
|
---|
71 |
|
---|
72 | First, all of the possible Huffman codes are counted, and reachable
|
---|
73 | intermediate states are noted by a non-zero count in a saved-results array.
|
---|
74 | Second, the intermediate states that lead to (root + 1) bit or longer codes
|
---|
75 | are used to look at all sub-codes from those junctures for their inflate
|
---|
76 | memory usage. (The amount of memory used is not affected by the number of
|
---|
77 | codes of root bits or less in length.) Third, the visited states in the
|
---|
78 | construction of those sub-codes and the associated calculation of the table
|
---|
79 | size is recalled in order to avoid recalculating from the same juncture.
|
---|
80 | Beginning the code examination at (root + 1) bit codes, which is enabled by
|
---|
81 | identifying the reachable nodes, accounts for about six of the orders of
|
---|
82 | magnitude of improvement for the default arguments. About another four
|
---|
83 | orders of magnitude come from not revisiting previous states. Out of
|
---|
84 | approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
|
---|
85 | need to be examined to cover all of the possible table memory usage cases
|
---|
86 | for the default arguments of 286 symbols limited to 15-bit codes.
|
---|
87 |
|
---|
88 | Note that an unsigned long long type is used for counting. It is quite easy
|
---|
89 | to exceed the capacity of an eight-byte integer with a large number of
|
---|
90 | symbols and a large maximum code length, so multiple-precision arithmetic
|
---|
91 | would need to replace the unsigned long long arithmetic in that case. This
|
---|
92 | program will abort if an overflow occurs. The big_t type identifies where
|
---|
93 | the counting takes place.
|
---|
94 |
|
---|
95 | An unsigned long long type is also used for calculating the number of
|
---|
96 | possible codes remaining at the maximum length. This limits the maximum
|
---|
97 | code length to the number of bits in a long long minus the number of bits
|
---|
98 | needed to represent the symbols in a flat code. The code_t type identifies
|
---|
99 | where the bit pattern counting takes place.
|
---|
100 | */
|
---|
101 |
|
---|
102 | #include <stdio.h>
|
---|
103 | #include <stdlib.h>
|
---|
104 | #include <string.h>
|
---|
105 | #include <assert.h>
|
---|
106 |
|
---|
107 | #define local static
|
---|
108 |
|
---|
109 | /* special data types */
|
---|
110 | typedef unsigned long long big_t; /* type for code counting */
|
---|
111 | typedef unsigned long long code_t; /* type for bit pattern counting */
|
---|
112 | struct tab { /* type for been here check */
|
---|
113 | size_t len; /* length of bit vector in char's */
|
---|
114 | char *vec; /* allocated bit vector */
|
---|
115 | };
|
---|
116 |
|
---|
117 | /* The array for saving results, num[], is indexed with this triplet:
|
---|
118 |
|
---|
119 | syms: number of symbols remaining to code
|
---|
120 | left: number of available bit patterns at length len
|
---|
121 | len: number of bits in the codes currently being assigned
|
---|
122 |
|
---|
123 | Those indices are constrained thusly when saving results:
|
---|
124 |
|
---|
125 | syms: 3..totsym (totsym == total symbols to code)
|
---|
126 | left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
|
---|
127 | len: 1..max - 1 (max == maximum code length in bits)
|
---|
128 |
|
---|
129 | syms == 2 is not saved since that immediately leads to a single code. left
|
---|
130 | must be even, since it represents the number of available bit patterns at
|
---|
131 | the current length, which is double the number at the previous length.
|
---|
132 | left ends at syms-1 since left == syms immediately results in a single code.
|
---|
133 | (left > sym is not allowed since that would result in an incomplete code.)
|
---|
134 | len is less than max, since the code completes immediately when len == max.
|
---|
135 |
|
---|
136 | The offset into the array is calculated for the three indices with the
|
---|
137 | first one (syms) being outermost, and the last one (len) being innermost.
|
---|
138 | We build the array with length max-1 lists for the len index, with syms-3
|
---|
139 | of those for each symbol. There are totsym-2 of those, with each one
|
---|
140 | varying in length as a function of sym. See the calculation of index in
|
---|
141 | count() for the index, and the calculation of size in main() for the size
|
---|
142 | of the array.
|
---|
143 |
|
---|
144 | For the deflate example of 286 symbols limited to 15-bit codes, the array
|
---|
145 | has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
|
---|
146 | half of the space allocated for saved results is actually used -- not all
|
---|
147 | possible triplets are reached in the generation of valid Huffman codes.
|
---|
148 | */
|
---|
149 |
|
---|
150 | /* The array for tracking visited states, done[], is itself indexed identically
|
---|
151 | to the num[] array as described above for the (syms, left, len) triplet.
|
---|
152 | Each element in the array is further indexed by the (mem, rem) doublet,
|
---|
153 | where mem is the amount of inflate table space used so far, and rem is the
|
---|
154 | remaining unused entries in the current inflate sub-table. Each indexed
|
---|
155 | element is simply one bit indicating whether the state has been visited or
|
---|
156 | not. Since the ranges for mem and rem are not known a priori, each bit
|
---|
157 | vector is of a variable size, and grows as needed to accommodate the visited
|
---|
158 | states. mem and rem are used to calculate a single index in a triangular
|
---|
159 | array. Since the range of mem is expected in the default case to be about
|
---|
160 | ten times larger than the range of rem, the array is skewed to reduce the
|
---|
161 | memory usage, with eight times the range for mem than for rem. See the
|
---|
162 | calculations for offset and bit in beenhere() for the details.
|
---|
163 |
|
---|
164 | For the deflate example of 286 symbols limited to 15-bit codes, the bit
|
---|
165 | vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
|
---|
166 | array itself.
|
---|
167 | */
|
---|
168 |
|
---|
169 | /* Globals to avoid propagating constants or constant pointers recursively */
|
---|
170 | local int max; /* maximum allowed bit length for the codes */
|
---|
171 | local int root; /* size of base code table in bits */
|
---|
172 | local int large; /* largest code table so far */
|
---|
173 | local size_t size; /* number of elements in num and done */
|
---|
174 | local int *code; /* number of symbols assigned to each bit length */
|
---|
175 | local big_t *num; /* saved results array for code counting */
|
---|
176 | local struct tab *done; /* states already evaluated array */
|
---|
177 |
|
---|
178 | /* Index function for num[] and done[] */
|
---|
179 | #define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
|
---|
180 |
|
---|
181 | /* Free allocated space. Uses globals code, num, and done. */
|
---|
182 | local void cleanup(void)
|
---|
183 | {
|
---|
184 | size_t n;
|
---|
185 |
|
---|
186 | if (done != NULL) {
|
---|
187 | for (n = 0; n < size; n++)
|
---|
188 | if (done[n].len)
|
---|
189 | free(done[n].vec);
|
---|
190 | free(done);
|
---|
191 | }
|
---|
192 | if (num != NULL)
|
---|
193 | free(num);
|
---|
194 | if (code != NULL)
|
---|
195 | free(code);
|
---|
196 | }
|
---|
197 |
|
---|
198 | /* Return the number of possible Huffman codes using bit patterns of lengths
|
---|
199 | len through max inclusive, coding syms symbols, with left bit patterns of
|
---|
200 | length len unused -- return -1 if there is an overflow in the counting.
|
---|
201 | Keep a record of previous results in num to prevent repeating the same
|
---|
202 | calculation. Uses the globals max and num. */
|
---|
203 | local big_t count(int syms, int len, int left)
|
---|
204 | {
|
---|
205 | big_t sum; /* number of possible codes from this juncture */
|
---|
206 | big_t got; /* value returned from count() */
|
---|
207 | int least; /* least number of syms to use at this juncture */
|
---|
208 | int most; /* most number of syms to use at this juncture */
|
---|
209 | int use; /* number of bit patterns to use in next call */
|
---|
210 | size_t index; /* index of this case in *num */
|
---|
211 |
|
---|
212 | /* see if only one possible code */
|
---|
213 | if (syms == left)
|
---|
214 | return 1;
|
---|
215 |
|
---|
216 | /* note and verify the expected state */
|
---|
217 | assert(syms > left && left > 0 && len < max);
|
---|
218 |
|
---|
219 | /* see if we've done this one already */
|
---|
220 | index = INDEX(syms, left, len);
|
---|
221 | got = num[index];
|
---|
222 | if (got)
|
---|
223 | return got; /* we have -- return the saved result */
|
---|
224 |
|
---|
225 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
226 | incomplete at the next length (more bit patterns than symbols) */
|
---|
227 | least = (left << 1) - syms;
|
---|
228 | if (least < 0)
|
---|
229 | least = 0;
|
---|
230 |
|
---|
231 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
232 | available for the remaining symbols at the maximum length (if there were
|
---|
233 | no limit to the code length, this would become: most = left - 1) */
|
---|
234 | most = (((code_t)left << (max - len)) - syms) /
|
---|
235 | (((code_t)1 << (max - len)) - 1);
|
---|
236 |
|
---|
237 | /* count all possible codes from this juncture and add them up */
|
---|
238 | sum = 0;
|
---|
239 | for (use = least; use <= most; use++) {
|
---|
240 | got = count(syms - use, len + 1, (left - use) << 1);
|
---|
241 | sum += got;
|
---|
242 | if (got == (big_t)0 - 1 || sum < got) /* overflow */
|
---|
243 | return (big_t)0 - 1;
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* verify that all recursive calls are productive */
|
---|
247 | assert(sum != 0);
|
---|
248 |
|
---|
249 | /* save the result and return it */
|
---|
250 | num[index] = sum;
|
---|
251 | return sum;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /* Return true if we've been here before, set to true if not. Set a bit in a
|
---|
255 | bit vector to indicate visiting this state. Each (syms,len,left) state
|
---|
256 | has a variable size bit vector indexed by (mem,rem). The bit vector is
|
---|
257 | lengthened if needed to allow setting the (mem,rem) bit. */
|
---|
258 | local int beenhere(int syms, int len, int left, int mem, int rem)
|
---|
259 | {
|
---|
260 | size_t index; /* index for this state's bit vector */
|
---|
261 | size_t offset; /* offset in this state's bit vector */
|
---|
262 | int bit; /* mask for this state's bit */
|
---|
263 | size_t length; /* length of the bit vector in bytes */
|
---|
264 | char *vector; /* new or enlarged bit vector */
|
---|
265 |
|
---|
266 | /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
|
---|
267 | index = INDEX(syms, left, len);
|
---|
268 | mem -= 1 << root;
|
---|
269 | offset = (mem >> 3) + rem;
|
---|
270 | offset = ((offset * (offset + 1)) >> 1) + rem;
|
---|
271 | bit = 1 << (mem & 7);
|
---|
272 |
|
---|
273 | /* see if we've been here */
|
---|
274 | length = done[index].len;
|
---|
275 | if (offset < length && (done[index].vec[offset] & bit) != 0)
|
---|
276 | return 1; /* done this! */
|
---|
277 |
|
---|
278 | /* we haven't been here before -- set the bit to show we have now */
|
---|
279 |
|
---|
280 | /* see if we need to lengthen the vector in order to set the bit */
|
---|
281 | if (length <= offset) {
|
---|
282 | /* if we have one already, enlarge it, zero out the appended space */
|
---|
283 | if (length) {
|
---|
284 | do {
|
---|
285 | length <<= 1;
|
---|
286 | } while (length <= offset);
|
---|
287 | vector = realloc(done[index].vec, length);
|
---|
288 | if (vector != NULL)
|
---|
289 | memset(vector + done[index].len, 0, length - done[index].len);
|
---|
290 | }
|
---|
291 |
|
---|
292 | /* otherwise we need to make a new vector and zero it out */
|
---|
293 | else {
|
---|
294 | length = 1 << (len - root);
|
---|
295 | while (length <= offset)
|
---|
296 | length <<= 1;
|
---|
297 | vector = calloc(length, sizeof(char));
|
---|
298 | }
|
---|
299 |
|
---|
300 | /* in either case, bail if we can't get the memory */
|
---|
301 | if (vector == NULL) {
|
---|
302 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
303 | cleanup();
|
---|
304 | exit(1);
|
---|
305 | }
|
---|
306 |
|
---|
307 | /* install the new vector */
|
---|
308 | done[index].len = length;
|
---|
309 | done[index].vec = vector;
|
---|
310 | }
|
---|
311 |
|
---|
312 | /* set the bit */
|
---|
313 | done[index].vec[offset] |= bit;
|
---|
314 | return 0;
|
---|
315 | }
|
---|
316 |
|
---|
317 | /* Examine all possible codes from the given node (syms, len, left). Compute
|
---|
318 | the amount of memory required to build inflate's decoding tables, where the
|
---|
319 | number of code structures used so far is mem, and the number remaining in
|
---|
320 | the current sub-table is rem. Uses the globals max, code, root, large, and
|
---|
321 | done. */
|
---|
322 | local void examine(int syms, int len, int left, int mem, int rem)
|
---|
323 | {
|
---|
324 | int least; /* least number of syms to use at this juncture */
|
---|
325 | int most; /* most number of syms to use at this juncture */
|
---|
326 | int use; /* number of bit patterns to use in next call */
|
---|
327 |
|
---|
328 | /* see if we have a complete code */
|
---|
329 | if (syms == left) {
|
---|
330 | /* set the last code entry */
|
---|
331 | code[len] = left;
|
---|
332 |
|
---|
333 | /* complete computation of memory used by this code */
|
---|
334 | while (rem < left) {
|
---|
335 | left -= rem;
|
---|
336 | rem = 1 << (len - root);
|
---|
337 | mem += rem;
|
---|
338 | }
|
---|
339 | assert(rem == left);
|
---|
340 |
|
---|
341 | /* if this is a new maximum, show the entries used and the sub-code */
|
---|
342 | if (mem > large) {
|
---|
343 | large = mem;
|
---|
344 | printf("max %d: ", mem);
|
---|
345 | for (use = root + 1; use <= max; use++)
|
---|
346 | if (code[use])
|
---|
347 | printf("%d[%d] ", code[use], use);
|
---|
348 | putchar('\n');
|
---|
349 | fflush(stdout);
|
---|
350 | }
|
---|
351 |
|
---|
352 | /* remove entries as we drop back down in the recursion */
|
---|
353 | code[len] = 0;
|
---|
354 | return;
|
---|
355 | }
|
---|
356 |
|
---|
357 | /* prune the tree if we can */
|
---|
358 | if (beenhere(syms, len, left, mem, rem))
|
---|
359 | return;
|
---|
360 |
|
---|
361 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
362 | incomplete at the next length (more bit patterns than symbols) */
|
---|
363 | least = (left << 1) - syms;
|
---|
364 | if (least < 0)
|
---|
365 | least = 0;
|
---|
366 |
|
---|
367 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
368 | available for the remaining symbols at the maximum length (if there were
|
---|
369 | no limit to the code length, this would become: most = left - 1) */
|
---|
370 | most = (((code_t)left << (max - len)) - syms) /
|
---|
371 | (((code_t)1 << (max - len)) - 1);
|
---|
372 |
|
---|
373 | /* occupy least table spaces, creating new sub-tables as needed */
|
---|
374 | use = least;
|
---|
375 | while (rem < use) {
|
---|
376 | use -= rem;
|
---|
377 | rem = 1 << (len - root);
|
---|
378 | mem += rem;
|
---|
379 | }
|
---|
380 | rem -= use;
|
---|
381 |
|
---|
382 | /* examine codes from here, updating table space as we go */
|
---|
383 | for (use = least; use <= most; use++) {
|
---|
384 | code[len] = use;
|
---|
385 | examine(syms - use, len + 1, (left - use) << 1,
|
---|
386 | mem + (rem ? 1 << (len - root) : 0), rem << 1);
|
---|
387 | if (rem == 0) {
|
---|
388 | rem = 1 << (len - root);
|
---|
389 | mem += rem;
|
---|
390 | }
|
---|
391 | rem--;
|
---|
392 | }
|
---|
393 |
|
---|
394 | /* remove entries as we drop back down in the recursion */
|
---|
395 | code[len] = 0;
|
---|
396 | }
|
---|
397 |
|
---|
398 | /* Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
---|
399 | intermediate code states (syms, left, len). For each completed code,
|
---|
400 | calculate the amount of memory required by inflate to build the decoding
|
---|
401 | tables. Find the maximum amount of memory required and show the code that
|
---|
402 | requires that maximum. Uses the globals max, root, and num. */
|
---|
403 | local void enough(int syms)
|
---|
404 | {
|
---|
405 | int n; /* number of remaing symbols for this node */
|
---|
406 | int left; /* number of unused bit patterns at this length */
|
---|
407 | size_t index; /* index of this case in *num */
|
---|
408 |
|
---|
409 | /* clear code */
|
---|
410 | for (n = 0; n <= max; n++)
|
---|
411 | code[n] = 0;
|
---|
412 |
|
---|
413 | /* look at all (root + 1) bit and longer codes */
|
---|
414 | large = 1 << root; /* base table */
|
---|
415 | if (root < max) /* otherwise, there's only a base table */
|
---|
416 | for (n = 3; n <= syms; n++)
|
---|
417 | for (left = 2; left < n; left += 2)
|
---|
418 | {
|
---|
419 | /* look at all reachable (root + 1) bit nodes, and the
|
---|
420 | resulting codes (complete at root + 2 or more) */
|
---|
421 | index = INDEX(n, left, root + 1);
|
---|
422 | if (root + 1 < max && num[index]) /* reachable node */
|
---|
423 | examine(n, root + 1, left, 1 << root, 0);
|
---|
424 |
|
---|
425 | /* also look at root bit codes with completions at root + 1
|
---|
426 | bits (not saved in num, since complete), just in case */
|
---|
427 | if (num[index - 1] && n <= left << 1)
|
---|
428 | examine((n - left) << 1, root + 1, (n - left) << 1,
|
---|
429 | 1 << root, 0);
|
---|
430 | }
|
---|
431 |
|
---|
432 | /* done */
|
---|
433 | printf("done: maximum of %d table entries\n", large);
|
---|
434 | }
|
---|
435 |
|
---|
436 | /*
|
---|
437 | Examine and show the total number of possible Huffman codes for a given
|
---|
438 | maximum number of symbols, initial root table size, and maximum code length
|
---|
439 | in bits -- those are the command arguments in that order. The default
|
---|
440 | values are 286, 9, and 15 respectively, for the deflate literal/length code.
|
---|
441 | The possible codes are counted for each number of coded symbols from two to
|
---|
442 | the maximum. The counts for each of those and the total number of codes are
|
---|
443 | shown. The maximum number of inflate table entires is then calculated
|
---|
444 | across all possible codes. Each new maximum number of table entries and the
|
---|
445 | associated sub-code (starting at root + 1 == 10 bits) is shown.
|
---|
446 |
|
---|
447 | To count and examine Huffman codes that are not length-limited, provide a
|
---|
448 | maximum length equal to the number of symbols minus one.
|
---|
449 |
|
---|
450 | For the deflate literal/length code, use "enough". For the deflate distance
|
---|
451 | code, use "enough 30 6".
|
---|
452 |
|
---|
453 | This uses the %llu printf format to print big_t numbers, which assumes that
|
---|
454 | big_t is an unsigned long long. If the big_t type is changed (for example
|
---|
455 | to a multiple precision type), the method of printing will also need to be
|
---|
456 | updated.
|
---|
457 | */
|
---|
458 | int main(int argc, char **argv)
|
---|
459 | {
|
---|
460 | int syms; /* total number of symbols to code */
|
---|
461 | int n; /* number of symbols to code for this run */
|
---|
462 | big_t got; /* return value of count() */
|
---|
463 | big_t sum; /* accumulated number of codes over n */
|
---|
464 | code_t word; /* for counting bits in code_t */
|
---|
465 |
|
---|
466 | /* set up globals for cleanup() */
|
---|
467 | code = NULL;
|
---|
468 | num = NULL;
|
---|
469 | done = NULL;
|
---|
470 |
|
---|
471 | /* get arguments -- default to the deflate literal/length code */
|
---|
472 | syms = 286;
|
---|
473 | root = 9;
|
---|
474 | max = 15;
|
---|
475 | if (argc > 1) {
|
---|
476 | syms = atoi(argv[1]);
|
---|
477 | if (argc > 2) {
|
---|
478 | root = atoi(argv[2]);
|
---|
479 | if (argc > 3)
|
---|
480 | max = atoi(argv[3]);
|
---|
481 | }
|
---|
482 | }
|
---|
483 | if (argc > 4 || syms < 2 || root < 1 || max < 1) {
|
---|
484 | fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
|
---|
485 | stderr);
|
---|
486 | return 1;
|
---|
487 | }
|
---|
488 |
|
---|
489 | /* if not restricting the code length, the longest is syms - 1 */
|
---|
490 | if (max > syms - 1)
|
---|
491 | max = syms - 1;
|
---|
492 |
|
---|
493 | /* determine the number of bits in a code_t */
|
---|
494 | for (n = 0, word = 1; word; n++, word <<= 1)
|
---|
495 | ;
|
---|
496 |
|
---|
497 | /* make sure that the calculation of most will not overflow */
|
---|
498 | if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
|
---|
499 | fputs("abort: code length too long for internal types\n", stderr);
|
---|
500 | return 1;
|
---|
501 | }
|
---|
502 |
|
---|
503 | /* reject impossible code requests */
|
---|
504 | if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
|
---|
505 | fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
|
---|
506 | syms, max);
|
---|
507 | return 1;
|
---|
508 | }
|
---|
509 |
|
---|
510 | /* allocate code vector */
|
---|
511 | code = calloc(max + 1, sizeof(int));
|
---|
512 | if (code == NULL) {
|
---|
513 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
514 | return 1;
|
---|
515 | }
|
---|
516 |
|
---|
517 | /* determine size of saved results array, checking for overflows,
|
---|
518 | allocate and clear the array (set all to zero with calloc()) */
|
---|
519 | if (syms == 2) /* iff max == 1 */
|
---|
520 | num = NULL; /* won't be saving any results */
|
---|
521 | else {
|
---|
522 | size = syms >> 1;
|
---|
523 | if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
|
---|
524 | (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
|
---|
525 | (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
|
---|
526 | (num = calloc(size, sizeof(big_t))) == NULL) {
|
---|
527 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
528 | cleanup();
|
---|
529 | return 1;
|
---|
530 | }
|
---|
531 | }
|
---|
532 |
|
---|
533 | /* count possible codes for all numbers of symbols, add up counts */
|
---|
534 | sum = 0;
|
---|
535 | for (n = 2; n <= syms; n++) {
|
---|
536 | got = count(n, 1, 2);
|
---|
537 | sum += got;
|
---|
538 | if (got == (big_t)0 - 1 || sum < got) { /* overflow */
|
---|
539 | fputs("abort: can't count that high!\n", stderr);
|
---|
540 | cleanup();
|
---|
541 | return 1;
|
---|
542 | }
|
---|
543 | printf("%llu %d-codes\n", got, n);
|
---|
544 | }
|
---|
545 | printf("%llu total codes for 2 to %d symbols", sum, syms);
|
---|
546 | if (max < syms - 1)
|
---|
547 | printf(" (%d-bit length limit)\n", max);
|
---|
548 | else
|
---|
549 | puts(" (no length limit)");
|
---|
550 |
|
---|
551 | /* allocate and clear done array for beenhere() */
|
---|
552 | if (syms == 2)
|
---|
553 | done = NULL;
|
---|
554 | else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
|
---|
555 | (done = calloc(size, sizeof(struct tab))) == NULL) {
|
---|
556 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
557 | cleanup();
|
---|
558 | return 1;
|
---|
559 | }
|
---|
560 |
|
---|
561 | /* find and show maximum inflate table usage */
|
---|
562 | if (root > max) /* reduce root to max length */
|
---|
563 | root = max;
|
---|
564 | if ((code_t)syms < ((code_t)1 << (root + 1)))
|
---|
565 | enough(syms);
|
---|
566 | else
|
---|
567 | puts("cannot handle minimum code lengths > root");
|
---|
568 |
|
---|
569 | /* done */
|
---|
570 | cleanup();
|
---|
571 | return 0;
|
---|
572 | }
|
---|