1 | /* xdelta 3 - delta compression tools and library
|
---|
2 | * Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald
|
---|
3 | *
|
---|
4 | * This program is free software; you can redistribute it and/or modify
|
---|
5 | * it under the terms of the GNU General Public License as published by
|
---|
6 | * the Free Software Foundation; either version 2 of the License, or
|
---|
7 | * (at your option) any later version.
|
---|
8 | *
|
---|
9 | * This program is distributed in the hope that it will be useful,
|
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
12 | * GNU General Public License for more details.
|
---|
13 | *
|
---|
14 | * You should have received a copy of the GNU General Public License
|
---|
15 | * along with this program; if not, write to the Free Software
|
---|
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
17 | */
|
---|
18 |
|
---|
19 | #ifndef _XDELTA3_DJW_H_
|
---|
20 | #define _XDELTA3_DJW_H_
|
---|
21 |
|
---|
22 | /* The following people deserve much credit for the algorithms and techniques contained in
|
---|
23 | * this file:
|
---|
24 |
|
---|
25 | Julian Seward
|
---|
26 | Bzip2 sources, implementation of the multi-table Huffman technique.
|
---|
27 |
|
---|
28 | Jean-loup Gailly and Mark Adler and L. Peter Deutsch
|
---|
29 | Zlib source code, RFC 1951
|
---|
30 |
|
---|
31 | Daniel S. Hirschberg and Debra A. LeLewer
|
---|
32 | "Efficient Decoding of Prefix Codes"
|
---|
33 | Communications of the ACM, April 1990 33(4).
|
---|
34 |
|
---|
35 | David J. Wheeler
|
---|
36 | Program bred3.c, bexp3 and accompanying documents bred3.ps, huff.ps.
|
---|
37 | This contains the idea behind the multi-table Huffman and 1-2 coding techniques.
|
---|
38 | ftp://ftp.cl.cam.ac.uk/users/djw3/
|
---|
39 |
|
---|
40 | */
|
---|
41 |
|
---|
42 | /* OPT: during the multi-table iteration, pick the worst-overall performing table and
|
---|
43 | * replace it with exactly the frequencies of the worst-overall performing sector or
|
---|
44 | * N-worst performing sectors. */
|
---|
45 |
|
---|
46 | /* REF: See xdfs-0.222 and xdfs-0.226 for some old experiments with the Bzip prefix coding
|
---|
47 | * strategy. xdfs-0.256 contains the last of the other-format tests, including RFC1950
|
---|
48 | * and the RFC1950+MTF tests. */
|
---|
49 |
|
---|
50 | #define DJW_MAX_CODELEN 32 /* Maximum length of an alphabet code. */
|
---|
51 |
|
---|
52 | #define DJW_TOTAL_CODES (DJW_MAX_CODELEN+2) /* [RUN_0, RUN_1, 1-DJW_MAX_CODELEN] */
|
---|
53 |
|
---|
54 | #define RUN_0 0 /* Symbols used in MTF+1/2 coding. */
|
---|
55 | #define RUN_1 1
|
---|
56 |
|
---|
57 | #define DJW_BASIC_CODES 5 /* Number of code lengths always encoded (djw_encode_basic array) */
|
---|
58 | #define DJW_RUN_CODES 2 /* Number of run codes */
|
---|
59 | #define DJW_EXTRA_12OFFSET 7 /* Offset of extra codes */
|
---|
60 | #define DJW_EXTRA_CODES 15 /* Number of optionally encoded code lengths (djw_encode_extra array) */
|
---|
61 | #define DJW_EXTRA_CODE_BITS 4 /* Number of bits to code [0-DJW_EXTRA_CODES] */
|
---|
62 |
|
---|
63 | #define DJW_MAX_GROUPS 8 /* Max number of group coding tables */
|
---|
64 | #define DJW_GROUP_BITS 3 /* Number of bits to code [1-DJW_MAX_GROUPS] */
|
---|
65 |
|
---|
66 | #define DJW_SECTORSZ_MULT 5 /* Multiplier for encoded sectorsz */
|
---|
67 | #define DJW_SECTORSZ_BITS 5 /* Number of bits to code group size */
|
---|
68 | #define DJW_SECTORSZ_MAX ((1 << DJW_SECTORSZ_BITS) * DJW_SECTORSZ_MULT)
|
---|
69 |
|
---|
70 | #define DJW_MAX_ITER 6 /* Maximum number of iterations to find group tables. */
|
---|
71 | #define DJW_MIN_IMPROVEMENT 20 /* Minimum number of bits an iteration must reduce coding by. */
|
---|
72 |
|
---|
73 | #define DJW_MAX_CLCLEN 15 /* Maximum code length of a prefix code length */
|
---|
74 | #define DJW_CLCLEN_BITS 4 /* Number of bits to code [0-DJW_MAX_CLCLEN] */
|
---|
75 |
|
---|
76 | #define DJW_MAX_GBCLEN 7 /* Maximum code length of a group selector */
|
---|
77 | #define DJW_GBCLEN_BITS 3 /* Number of bits to code [0-DJW_MAX_GBCLEN]
|
---|
78 | * @!@ Actually, should never have zero code lengths here, or
|
---|
79 | * else a group went unused. Write a test for this: if a group
|
---|
80 | * goes unused, eliminate it? */
|
---|
81 |
|
---|
82 | #define EFFICIENCY_BITS 16 /* It has to save at least this many bits... */
|
---|
83 |
|
---|
84 | typedef struct _djw_stream djw_stream;
|
---|
85 | typedef struct _djw_heapen djw_heapen;
|
---|
86 | typedef struct _djw_prefix djw_prefix;
|
---|
87 | typedef uint32_t djw_weight;
|
---|
88 |
|
---|
89 | /* To enable Huffman tuning code... */
|
---|
90 | #ifndef TUNE_HUFFMAN
|
---|
91 | #define TUNE_HUFFMAN 0
|
---|
92 | #endif
|
---|
93 |
|
---|
94 | #if TUNE_HUFFMAN == 0
|
---|
95 | #define xd3_real_encode_huff xd3_encode_huff
|
---|
96 | #define IF_TUNE(x)
|
---|
97 | #define IF_NTUNE(x) x
|
---|
98 | #else
|
---|
99 | static uint xd3_bitsof_output (xd3_output *output, bit_state *bstate);
|
---|
100 | #define IF_TUNE(x) x
|
---|
101 | #define IF_NTUNE(x)
|
---|
102 | static djw_weight tune_freq[DJW_TOTAL_CODES];
|
---|
103 | static uint8_t tune_clen[DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
104 | static usize_t tune_prefix_bits;
|
---|
105 | static usize_t tune_select_bits;
|
---|
106 | static usize_t tune_encode_bits;
|
---|
107 | #endif
|
---|
108 | struct _djw_heapen
|
---|
109 | {
|
---|
110 | uint32_t depth;
|
---|
111 | uint32_t freq;
|
---|
112 | uint32_t parent;
|
---|
113 | };
|
---|
114 |
|
---|
115 | struct _djw_prefix
|
---|
116 | {
|
---|
117 | usize_t scount;
|
---|
118 | uint8_t *symbol;
|
---|
119 | usize_t mcount;
|
---|
120 | uint8_t *mtfsym;
|
---|
121 | uint8_t *repcnt;
|
---|
122 | };
|
---|
123 |
|
---|
124 | struct _djw_stream
|
---|
125 | {
|
---|
126 | int unused;
|
---|
127 | };
|
---|
128 |
|
---|
129 | /* Each Huffman table consists of 256 "code length" (CLEN) codes, which are themselves
|
---|
130 | * Huffman coded after eliminating repeats and move-to-front coding. The prefix consists
|
---|
131 | * of all the CLEN codes in djw_encode_basic plus a 4-bit value stating how many of the
|
---|
132 | * djw_encode_extra codes are actually coded (the rest are presumed zero, or unused CLEN
|
---|
133 | * codes).
|
---|
134 | *
|
---|
135 | * These values of these two arrays were arrived at by studying the distribution of min
|
---|
136 | * and max clen over a collection of DATA, INST, and ADDR inputs. The goal is to specify
|
---|
137 | * the order of djw_extra_codes that is most likely to minimize the number of extra codes
|
---|
138 | * that must be encoded.
|
---|
139 | *
|
---|
140 | * Results: 158896 sections were counted by compressing files (window size 512K) listed
|
---|
141 | * with: `find / -type f ( -user jmacd -o -perm +444 )`
|
---|
142 | *
|
---|
143 | * The distribution of CLEN codes for each efficient invocation of the secondary
|
---|
144 | * compressor (taking the best number of groups/sector size) was recorded. Then we look at
|
---|
145 | * the distribution of min and max clen values, counting the number of times the value
|
---|
146 | * C_low is less than the min and C_high is greater than the max. Values >= C_high and <=
|
---|
147 | * C_low will not have their lengths coded. The results are sorted and the least likely
|
---|
148 | * 15 are placed into the djw_encode_extra[] array in order. These values are used as
|
---|
149 | * the initial MTF ordering.
|
---|
150 |
|
---|
151 | clow[1] = 155119
|
---|
152 | clow[2] = 140325
|
---|
153 | clow[3] = 84072
|
---|
154 | ---
|
---|
155 | clow[4] = 7225
|
---|
156 | clow[5] = 1093
|
---|
157 | clow[6] = 215
|
---|
158 | ---
|
---|
159 | chigh[4] = 1
|
---|
160 | chigh[5] = 30
|
---|
161 | chigh[6] = 218
|
---|
162 | chigh[7] = 2060
|
---|
163 | chigh[8] = 13271
|
---|
164 | ---
|
---|
165 | chigh[9] = 39463
|
---|
166 | chigh[10] = 77360
|
---|
167 | chigh[11] = 118298
|
---|
168 | chigh[12] = 141360
|
---|
169 | chigh[13] = 154086
|
---|
170 | chigh[14] = 157967
|
---|
171 | chigh[15] = 158603
|
---|
172 | chigh[16] = 158864
|
---|
173 | chigh[17] = 158893
|
---|
174 | chigh[18] = 158895
|
---|
175 | chigh[19] = 158896
|
---|
176 | chigh[20] = 158896
|
---|
177 |
|
---|
178 | */
|
---|
179 |
|
---|
180 | static const uint8_t djw_encode_12extra[DJW_EXTRA_CODES] =
|
---|
181 | {
|
---|
182 | 9, 10, 3, 11, 2, 12, 13, 1, 14, 15, 16, 17, 18, 19, 20
|
---|
183 | };
|
---|
184 |
|
---|
185 | static const uint8_t djw_encode_12basic[DJW_BASIC_CODES] =
|
---|
186 | {
|
---|
187 | 4, 5, 6, 7, 8,
|
---|
188 | };
|
---|
189 |
|
---|
190 | /*********************************************************************/
|
---|
191 | /* DECLS */
|
---|
192 | /*********************************************************************/
|
---|
193 |
|
---|
194 | static djw_stream* djw_alloc (xd3_stream *stream /*, int alphabet_size */);
|
---|
195 | static void djw_init (djw_stream *h);
|
---|
196 | static void djw_destroy (xd3_stream *stream,
|
---|
197 | djw_stream *h);
|
---|
198 |
|
---|
199 | #if XD3_ENCODER
|
---|
200 | static int xd3_encode_huff (xd3_stream *stream,
|
---|
201 | djw_stream *sec_stream,
|
---|
202 | xd3_output *input,
|
---|
203 | xd3_output *output,
|
---|
204 | xd3_sec_cfg *cfg);
|
---|
205 | #endif
|
---|
206 |
|
---|
207 | static int xd3_decode_huff (xd3_stream *stream,
|
---|
208 | djw_stream *sec_stream,
|
---|
209 | const uint8_t **input,
|
---|
210 | const uint8_t *const input_end,
|
---|
211 | uint8_t **output,
|
---|
212 | const uint8_t *const output_end);
|
---|
213 |
|
---|
214 | /*********************************************************************/
|
---|
215 | /* HUFFMAN */
|
---|
216 | /*********************************************************************/
|
---|
217 |
|
---|
218 | static djw_stream*
|
---|
219 | djw_alloc (xd3_stream *stream)
|
---|
220 | {
|
---|
221 | return xd3_alloc (stream, sizeof (djw_stream), 1);
|
---|
222 | }
|
---|
223 |
|
---|
224 | static void
|
---|
225 | djw_init (djw_stream *h)
|
---|
226 | {
|
---|
227 | /* Fields are initialized prior to use. */
|
---|
228 | }
|
---|
229 |
|
---|
230 | static void
|
---|
231 | djw_destroy (xd3_stream *stream,
|
---|
232 | djw_stream *h)
|
---|
233 | {
|
---|
234 | xd3_free (stream, h);
|
---|
235 | }
|
---|
236 |
|
---|
237 |
|
---|
238 | /*********************************************************************/
|
---|
239 | /* HEAP */
|
---|
240 | /*********************************************************************/
|
---|
241 |
|
---|
242 | static INLINE int
|
---|
243 | heap_less (const djw_heapen *a, const djw_heapen *b)
|
---|
244 | {
|
---|
245 | return a->freq < b->freq ||
|
---|
246 | (a->freq == b->freq &&
|
---|
247 | a->depth < b->depth);
|
---|
248 | }
|
---|
249 |
|
---|
250 | static INLINE void
|
---|
251 | heap_insert (uint *heap, const djw_heapen *ents, uint p, const uint e)
|
---|
252 | {
|
---|
253 | /* Insert ents[e] into next slot heap[p] */
|
---|
254 | uint pp = p/2; /* P's parent */
|
---|
255 |
|
---|
256 | while (heap_less (& ents[e], & ents[heap[pp]]))
|
---|
257 | {
|
---|
258 | heap[p] = heap[pp];
|
---|
259 | p = pp;
|
---|
260 | pp = p/2;
|
---|
261 | }
|
---|
262 |
|
---|
263 | heap[p] = e;
|
---|
264 | }
|
---|
265 |
|
---|
266 | static INLINE djw_heapen*
|
---|
267 | heap_extract (uint *heap, const djw_heapen *ents, uint heap_last)
|
---|
268 | {
|
---|
269 | uint smallest = heap[1];
|
---|
270 | uint p, pc, t;
|
---|
271 |
|
---|
272 | /* Caller decrements heap_last, so heap_last+1 is the replacement elt. */
|
---|
273 | heap[1] = heap[heap_last+1];
|
---|
274 |
|
---|
275 | /* Re-heapify */
|
---|
276 | for (p = 1; ; p = pc)
|
---|
277 | {
|
---|
278 | pc = p*2;
|
---|
279 |
|
---|
280 | /* Reached bottom of heap */
|
---|
281 | if (pc > heap_last) { break; }
|
---|
282 |
|
---|
283 | /* See if second child is smaller. */
|
---|
284 | if (pc < heap_last && heap_less (& ents[heap[pc+1]], & ents[heap[pc]])) { pc += 1; }
|
---|
285 |
|
---|
286 | /* If pc is not smaller than p, heap property re-established. */
|
---|
287 | if (! heap_less (& ents[heap[pc]], & ents[heap[p]])) { break; }
|
---|
288 |
|
---|
289 | t = heap[pc];
|
---|
290 | heap[pc] = heap[p];
|
---|
291 | heap[p] = t;
|
---|
292 | }
|
---|
293 |
|
---|
294 | return (djw_heapen*) & ents[smallest];
|
---|
295 | }
|
---|
296 |
|
---|
297 | #if XD3_DEBUG
|
---|
298 | static void
|
---|
299 | heap_check (uint *heap, djw_heapen *ents, uint heap_last)
|
---|
300 | {
|
---|
301 | uint i;
|
---|
302 | for (i = 1; i <= heap_last; i += 1)
|
---|
303 | {
|
---|
304 | /* Heap property: child not less than parent */
|
---|
305 | XD3_ASSERT (! heap_less (& ents[heap[i]], & ents[heap[i/2]]));
|
---|
306 | }
|
---|
307 | }
|
---|
308 | #endif
|
---|
309 |
|
---|
310 | /*********************************************************************/
|
---|
311 | /* MTF, 1/2 */
|
---|
312 | /*********************************************************************/
|
---|
313 |
|
---|
314 | static INLINE usize_t
|
---|
315 | djw_update_mtf (uint8_t *mtf, usize_t mtf_i)
|
---|
316 | {
|
---|
317 | int k;
|
---|
318 | usize_t sym = mtf[mtf_i];
|
---|
319 |
|
---|
320 | for (k = mtf_i; k != 0; k -= 1) { mtf[k] = mtf[k-1]; }
|
---|
321 |
|
---|
322 | mtf[0] = sym;
|
---|
323 | return sym;
|
---|
324 | }
|
---|
325 |
|
---|
326 | static INLINE void
|
---|
327 | djw_update_1_2 (int *mtf_run, usize_t *mtf_i, uint8_t *mtfsym, djw_weight *freq)
|
---|
328 | {
|
---|
329 | int code;
|
---|
330 |
|
---|
331 | do
|
---|
332 | {
|
---|
333 | /* Offset by 1, since any number of RUN_ symbols implies run>0... */
|
---|
334 | *mtf_run -= 1;
|
---|
335 |
|
---|
336 | code = (*mtf_run & 1) ? RUN_1 : RUN_0;
|
---|
337 |
|
---|
338 | mtfsym[(*mtf_i)++] = code;
|
---|
339 | freq[code] += 1;
|
---|
340 | *mtf_run >>= 1;
|
---|
341 | }
|
---|
342 | while (*mtf_run >= 1);
|
---|
343 |
|
---|
344 | *mtf_run = 0;
|
---|
345 | }
|
---|
346 |
|
---|
347 | static void
|
---|
348 | djw_init_clen_mtf_1_2 (uint8_t *clmtf)
|
---|
349 | {
|
---|
350 | int i, cl_i = 0;
|
---|
351 |
|
---|
352 | clmtf[cl_i++] = 0;
|
---|
353 | for (i = 0; i < DJW_BASIC_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12basic[i]; }
|
---|
354 | for (i = 0; i < DJW_EXTRA_CODES; i += 1) { clmtf[cl_i++] = djw_encode_12extra[i]; }
|
---|
355 | }
|
---|
356 |
|
---|
357 | /*********************************************************************/
|
---|
358 | /* PREFIX CODES */
|
---|
359 | /*********************************************************************/
|
---|
360 | #if XD3_ENCODER
|
---|
361 | static usize_t
|
---|
362 | djw_build_prefix (const djw_weight *freq, uint8_t *clen, int asize, int maxlen)
|
---|
363 | {
|
---|
364 | /* Heap with 0th entry unused, prefix tree with up to ALPHABET_SIZE-1 internal nodes,
|
---|
365 | * never more than ALPHABET_SIZE entries actually in the heap (minimum weight subtrees
|
---|
366 | * during prefix construction). First ALPHABET_SIZE entries are the actual symbols,
|
---|
367 | * next ALPHABET_SIZE-1 are internal nodes. */
|
---|
368 | djw_heapen ents[ALPHABET_SIZE * 2];
|
---|
369 | uint heap[ALPHABET_SIZE + 1];
|
---|
370 |
|
---|
371 | uint heap_last; /* Index of the last _valid_ heap entry. */
|
---|
372 | uint ents_size; /* Number of entries, including 0th fake entry */
|
---|
373 | int overflow; /* Number of code lengths that overflow */
|
---|
374 | uint32_t total_bits;
|
---|
375 | int i;
|
---|
376 |
|
---|
377 | IF_DEBUG (uint32_t first_bits = 0);
|
---|
378 |
|
---|
379 | /* Insert real symbol frequences. */
|
---|
380 | for (i = 0; i < asize; i += 1)
|
---|
381 | {
|
---|
382 | ents[i+1].freq = freq[i];
|
---|
383 | }
|
---|
384 |
|
---|
385 | again:
|
---|
386 |
|
---|
387 | /* The loop is re-entered each time an overflow occurs. Re-initialize... */
|
---|
388 | heap_last = 0;
|
---|
389 | ents_size = 1;
|
---|
390 | overflow = 0;
|
---|
391 | total_bits = 0;
|
---|
392 |
|
---|
393 | /* 0th entry terminates the while loop in heap_insert (its the parent of the smallest
|
---|
394 | * element, always less-than) */
|
---|
395 | heap[0] = 0;
|
---|
396 | ents[0].depth = 0;
|
---|
397 | ents[0].freq = 0;
|
---|
398 |
|
---|
399 | /* Initial heap. */
|
---|
400 | for (i = 0; i < asize; i += 1, ents_size += 1)
|
---|
401 | {
|
---|
402 | ents[ents_size].depth = 0;
|
---|
403 | ents[ents_size].parent = 0;
|
---|
404 |
|
---|
405 | if (ents[ents_size].freq != 0)
|
---|
406 | {
|
---|
407 | heap_insert (heap, ents, ++heap_last, ents_size);
|
---|
408 | }
|
---|
409 | }
|
---|
410 |
|
---|
411 | IF_DEBUG (heap_check (heap, ents, heap_last));
|
---|
412 |
|
---|
413 | /* Must be at least one symbol, or else we can't get here. */
|
---|
414 | XD3_ASSERT (heap_last != 0);
|
---|
415 |
|
---|
416 | /* If there is only one symbol, fake a second to prevent zero-length codes. */
|
---|
417 | if (unlikely (heap_last == 1))
|
---|
418 | {
|
---|
419 | /* Pick either the first or last symbol. */
|
---|
420 | int s = freq[0] ? asize-1 : 0;
|
---|
421 | ents[s+1].freq = 1;
|
---|
422 | goto again;
|
---|
423 | }
|
---|
424 |
|
---|
425 | /* Build prefix tree. */
|
---|
426 | while (heap_last > 1)
|
---|
427 | {
|
---|
428 | djw_heapen *h1 = heap_extract (heap, ents, --heap_last);
|
---|
429 | djw_heapen *h2 = heap_extract (heap, ents, --heap_last);
|
---|
430 |
|
---|
431 | ents[ents_size].freq = h1->freq + h2->freq;
|
---|
432 | ents[ents_size].depth = 1 + max (h1->depth, h2->depth);
|
---|
433 | ents[ents_size].parent = 0;
|
---|
434 |
|
---|
435 | h1->parent = h2->parent = ents_size;
|
---|
436 |
|
---|
437 | heap_insert (heap, ents, ++heap_last, ents_size++);
|
---|
438 |
|
---|
439 | IF_DEBUG (heap_check (heap, ents, heap_last));
|
---|
440 | }
|
---|
441 |
|
---|
442 | /* Now compute prefix code lengths, counting parents. */
|
---|
443 | for (i = 1; i < asize+1; i += 1)
|
---|
444 | {
|
---|
445 | int b = 0;
|
---|
446 |
|
---|
447 | if (ents[i].freq != 0)
|
---|
448 | {
|
---|
449 | int p = i;
|
---|
450 |
|
---|
451 | while ((p = ents[p].parent) != 0) { b += 1; }
|
---|
452 |
|
---|
453 | if (b > maxlen) { overflow = 1; }
|
---|
454 |
|
---|
455 | total_bits += b * freq[i-1];
|
---|
456 | }
|
---|
457 |
|
---|
458 | /* clen is 0-origin, unlike ents. */
|
---|
459 | clen[i-1] = b;
|
---|
460 | }
|
---|
461 |
|
---|
462 | IF_DEBUG (if (first_bits == 0) first_bits = total_bits);
|
---|
463 |
|
---|
464 | if (! overflow)
|
---|
465 | {
|
---|
466 | IF_DEBUG (if (first_bits != total_bits)
|
---|
467 | {
|
---|
468 | DP(RINT "code length overflow changed %u bits\n", (usize_t)(total_bits - first_bits));
|
---|
469 | });
|
---|
470 | return total_bits;
|
---|
471 | }
|
---|
472 |
|
---|
473 | /* OPT: There is a non-looping way to fix overflow shown in zlib, but this is easier
|
---|
474 | * (for now), as done in bzip2. */
|
---|
475 | for (i = 1; i < asize+1; i += 1)
|
---|
476 | {
|
---|
477 | ents[i].freq = ents[i].freq / 2 + 1;
|
---|
478 | }
|
---|
479 |
|
---|
480 | goto again;
|
---|
481 | }
|
---|
482 |
|
---|
483 | static void
|
---|
484 | djw_build_codes (uint *codes, const uint8_t *clen, int asize DEBUG_ARG (int abs_max))
|
---|
485 | {
|
---|
486 | int i, l;
|
---|
487 | int min_clen = DJW_MAX_CODELEN;
|
---|
488 | int max_clen = 0;
|
---|
489 | uint code = 0;
|
---|
490 |
|
---|
491 | for (i = 0; i < asize; i += 1)
|
---|
492 | {
|
---|
493 | if (clen[i] > 0 && clen[i] < min_clen)
|
---|
494 | {
|
---|
495 | min_clen = clen[i];
|
---|
496 | }
|
---|
497 |
|
---|
498 | max_clen = max (max_clen, (int) clen[i]);
|
---|
499 | }
|
---|
500 |
|
---|
501 | XD3_ASSERT (max_clen <= abs_max);
|
---|
502 |
|
---|
503 | for (l = min_clen; l <= max_clen; l += 1)
|
---|
504 | {
|
---|
505 | for (i = 0; i < asize; i += 1)
|
---|
506 | {
|
---|
507 | if (clen[i] == l) { codes[i] = code++; }
|
---|
508 | }
|
---|
509 |
|
---|
510 | code <<= 1;
|
---|
511 | }
|
---|
512 | }
|
---|
513 |
|
---|
514 | /*********************************************************************/
|
---|
515 | /* MOVE-TO-FRONT */
|
---|
516 | /*********************************************************************/
|
---|
517 | static void
|
---|
518 | djw_compute_mtf_1_2 (djw_prefix *prefix,
|
---|
519 | uint8_t *mtf,
|
---|
520 | djw_weight *freq_out, /* freak out! */
|
---|
521 | usize_t nsym)
|
---|
522 | {
|
---|
523 | int i, j, k;
|
---|
524 | usize_t sym;
|
---|
525 | usize_t size = prefix->scount;
|
---|
526 | usize_t mtf_i = 0;
|
---|
527 | int mtf_run = 0;
|
---|
528 |
|
---|
529 | memset (freq_out, 0, sizeof (freq_out[0]) * (nsym+1));
|
---|
530 |
|
---|
531 | for (i = 0; i < size; )
|
---|
532 | {
|
---|
533 | /* OPT: Bzip optimizes this algorithm a little by effectively checking j==0 before
|
---|
534 | * the MTF update. */
|
---|
535 | sym = prefix->symbol[i++];
|
---|
536 |
|
---|
537 | for (j = 0; mtf[j] != sym; j += 1) { }
|
---|
538 |
|
---|
539 | XD3_ASSERT (j < nsym);
|
---|
540 |
|
---|
541 | for (k = j; k >= 1; k -= 1) { mtf[k] = mtf[k-1]; }
|
---|
542 |
|
---|
543 | mtf[0] = sym;
|
---|
544 |
|
---|
545 | if (j == 0)
|
---|
546 | {
|
---|
547 | mtf_run += 1;
|
---|
548 | continue;
|
---|
549 | }
|
---|
550 |
|
---|
551 | if (mtf_run > 0)
|
---|
552 | {
|
---|
553 | djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out);
|
---|
554 | }
|
---|
555 |
|
---|
556 | /* Non-zero symbols are offset by RUN_1 */
|
---|
557 | prefix->mtfsym[mtf_i++] = j+RUN_1;
|
---|
558 | freq_out[j+RUN_1] += 1;
|
---|
559 | }
|
---|
560 |
|
---|
561 | if (mtf_run > 0)
|
---|
562 | {
|
---|
563 | djw_update_1_2 (& mtf_run, & mtf_i, prefix->mtfsym, freq_out);
|
---|
564 | }
|
---|
565 |
|
---|
566 | prefix->mcount = mtf_i;
|
---|
567 | }
|
---|
568 |
|
---|
569 | static usize_t
|
---|
570 | djw_count_freqs (djw_weight *freq, xd3_output *input)
|
---|
571 | {
|
---|
572 | xd3_output *in;
|
---|
573 | usize_t size = 0;
|
---|
574 |
|
---|
575 | memset (freq, 0, sizeof (freq[0]) * ALPHABET_SIZE);
|
---|
576 |
|
---|
577 | /* Freqency counting. OPT: can be accomplished beforehand. */
|
---|
578 | for (in = input; in; in = in->next_page)
|
---|
579 | {
|
---|
580 | const uint8_t *p = in->base;
|
---|
581 | const uint8_t *p_max = p + in->next;
|
---|
582 |
|
---|
583 | size += in->next;
|
---|
584 |
|
---|
585 | do { freq[*p++] += 1; } while (p < p_max);
|
---|
586 | }
|
---|
587 |
|
---|
588 | IF_DEBUG1 ({int i;
|
---|
589 | DP(RINT "freqs: ");
|
---|
590 | for (i = 0; i < ALPHABET_SIZE; i += 1) { DP(RINT "%u ", freq[i]); }
|
---|
591 | DP(RINT "\n");});
|
---|
592 |
|
---|
593 | return size;
|
---|
594 | }
|
---|
595 |
|
---|
596 | static void
|
---|
597 | djw_compute_multi_prefix (int groups,
|
---|
598 | uint8_t clen[DJW_MAX_GROUPS][ALPHABET_SIZE],
|
---|
599 | djw_prefix *prefix)
|
---|
600 | {
|
---|
601 | int gp, i;
|
---|
602 |
|
---|
603 | prefix->scount = ALPHABET_SIZE;
|
---|
604 | memcpy (prefix->symbol, clen[0], ALPHABET_SIZE);
|
---|
605 |
|
---|
606 | for (gp = 1; gp < groups; gp += 1)
|
---|
607 | {
|
---|
608 | for (i = 0; i < ALPHABET_SIZE; i += 1)
|
---|
609 | {
|
---|
610 | if (clen[gp][i] == 0)
|
---|
611 | {
|
---|
612 | continue;
|
---|
613 | }
|
---|
614 |
|
---|
615 | prefix->symbol[prefix->scount++] = clen[gp][i];
|
---|
616 | }
|
---|
617 | }
|
---|
618 | }
|
---|
619 |
|
---|
620 | static void
|
---|
621 | djw_compute_prefix_1_2 (djw_prefix *prefix, djw_weight *freq)
|
---|
622 | {
|
---|
623 | uint8_t clmtf[DJW_MAX_CODELEN+1];
|
---|
624 |
|
---|
625 | djw_init_clen_mtf_1_2 (clmtf);
|
---|
626 |
|
---|
627 | djw_compute_mtf_1_2 (prefix, clmtf, freq, DJW_MAX_CODELEN+1);
|
---|
628 | }
|
---|
629 |
|
---|
630 | static int
|
---|
631 | djw_encode_prefix (xd3_stream *stream,
|
---|
632 | xd3_output **output,
|
---|
633 | bit_state *bstate,
|
---|
634 | djw_prefix *prefix)
|
---|
635 | {
|
---|
636 | int ret, i;
|
---|
637 | uint num_to_encode;
|
---|
638 | djw_weight clfreq[DJW_TOTAL_CODES];
|
---|
639 | uint8_t clclen[DJW_TOTAL_CODES];
|
---|
640 | uint clcode[DJW_TOTAL_CODES];
|
---|
641 |
|
---|
642 | IF_TUNE (memset (clfreq, 0, sizeof (clfreq)));
|
---|
643 |
|
---|
644 | /* Move-to-front encode prefix symbols, count frequencies */
|
---|
645 | djw_compute_prefix_1_2 (prefix, clfreq);
|
---|
646 |
|
---|
647 | /* Compute codes */
|
---|
648 | djw_build_prefix (clfreq, clclen, DJW_TOTAL_CODES, DJW_MAX_CLCLEN);
|
---|
649 | djw_build_codes (clcode, clclen, DJW_TOTAL_CODES DEBUG_ARG (DJW_MAX_CLCLEN));
|
---|
650 |
|
---|
651 | /* Compute number of extra codes beyond basic ones for this template. */
|
---|
652 | num_to_encode = DJW_TOTAL_CODES;
|
---|
653 | while (num_to_encode > DJW_EXTRA_12OFFSET && clclen[num_to_encode-1] == 0) { num_to_encode -= 1; }
|
---|
654 | XD3_ASSERT (num_to_encode - DJW_EXTRA_12OFFSET < (1 << DJW_EXTRA_CODE_BITS));
|
---|
655 |
|
---|
656 | /* Encode: # of extra codes */
|
---|
657 | if ((ret = xd3_encode_bits (stream, output, bstate, DJW_EXTRA_CODE_BITS,
|
---|
658 | num_to_encode - DJW_EXTRA_12OFFSET))) { return ret; }
|
---|
659 |
|
---|
660 | /* Encode: MTF code lengths */
|
---|
661 | for (i = 0; i < num_to_encode; i += 1)
|
---|
662 | {
|
---|
663 | if ((ret = xd3_encode_bits (stream, output, bstate, DJW_CLCLEN_BITS, clclen[i]))) { return ret; }
|
---|
664 | }
|
---|
665 |
|
---|
666 | /* Encode: CLEN code lengths */
|
---|
667 | for (i = 0; i < prefix->mcount; i += 1)
|
---|
668 | {
|
---|
669 | usize_t mtf_sym = prefix->mtfsym[i];
|
---|
670 | usize_t bits = clclen[mtf_sym];
|
---|
671 | usize_t code = clcode[mtf_sym];
|
---|
672 |
|
---|
673 | if ((ret = xd3_encode_bits (stream, output, bstate, bits, code))) { return ret; }
|
---|
674 | }
|
---|
675 |
|
---|
676 | IF_TUNE (memcpy (tune_freq, clfreq, sizeof (clfreq)));
|
---|
677 |
|
---|
678 | return 0;
|
---|
679 | }
|
---|
680 |
|
---|
681 | static void
|
---|
682 | djw_compute_selector_1_2 (djw_prefix *prefix,
|
---|
683 | usize_t groups,
|
---|
684 | djw_weight *gbest_freq)
|
---|
685 | {
|
---|
686 | uint8_t grmtf[DJW_MAX_GROUPS];
|
---|
687 | usize_t i;
|
---|
688 |
|
---|
689 | for (i = 0; i < groups; i += 1) { grmtf[i] = i; }
|
---|
690 |
|
---|
691 | djw_compute_mtf_1_2 (prefix, grmtf, gbest_freq, groups);
|
---|
692 | }
|
---|
693 |
|
---|
694 | static int
|
---|
695 | xd3_encode_howmany_groups (xd3_stream *stream,
|
---|
696 | xd3_sec_cfg *cfg,
|
---|
697 | usize_t input_size,
|
---|
698 | usize_t *ret_groups,
|
---|
699 | usize_t *ret_sector_size)
|
---|
700 | {
|
---|
701 | usize_t cfg_groups = 0;
|
---|
702 | usize_t cfg_sector_size = 0;
|
---|
703 | usize_t sugg_groups = 0;
|
---|
704 | usize_t sugg_sector_size = 0;
|
---|
705 |
|
---|
706 | if (cfg->ngroups != 0)
|
---|
707 | {
|
---|
708 | if (cfg->ngroups < 0 || cfg->ngroups > DJW_MAX_GROUPS)
|
---|
709 | {
|
---|
710 | stream->msg = "invalid secondary encoder group number";
|
---|
711 | return XD3_INTERNAL;
|
---|
712 | }
|
---|
713 |
|
---|
714 | cfg_groups = cfg->ngroups;
|
---|
715 | }
|
---|
716 |
|
---|
717 | if (cfg->sector_size != 0)
|
---|
718 | {
|
---|
719 | if (cfg->sector_size < DJW_SECTORSZ_MULT || cfg->sector_size > DJW_SECTORSZ_MAX || (cfg->sector_size % DJW_SECTORSZ_MULT) != 0)
|
---|
720 | {
|
---|
721 | stream->msg = "invalid secondary encoder sector size";
|
---|
722 | return XD3_INTERNAL;
|
---|
723 | }
|
---|
724 |
|
---|
725 | cfg_sector_size = cfg->sector_size;
|
---|
726 | }
|
---|
727 |
|
---|
728 | if (cfg_groups == 0 || cfg_sector_size == 0)
|
---|
729 | {
|
---|
730 | /* These values were found empirically using xdelta3-tune around version
|
---|
731 | * xdfs-0.256. */
|
---|
732 | switch (cfg->data_type)
|
---|
733 | {
|
---|
734 | case DATA_SECTION:
|
---|
735 | if (input_size < 1000) { sugg_groups = 1; sugg_sector_size = 0; }
|
---|
736 | else if (input_size < 4000) { sugg_groups = 2; sugg_sector_size = 10; }
|
---|
737 | else if (input_size < 7000) { sugg_groups = 3; sugg_sector_size = 10; }
|
---|
738 | else if (input_size < 10000) { sugg_groups = 4; sugg_sector_size = 10; }
|
---|
739 | else if (input_size < 25000) { sugg_groups = 5; sugg_sector_size = 10; }
|
---|
740 | else if (input_size < 50000) { sugg_groups = 7; sugg_sector_size = 20; }
|
---|
741 | else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 30; }
|
---|
742 | else { sugg_groups = 8; sugg_sector_size = 70; }
|
---|
743 | break;
|
---|
744 | case INST_SECTION:
|
---|
745 | if (input_size < 7000) { sugg_groups = 1; sugg_sector_size = 0; }
|
---|
746 | else if (input_size < 10000) { sugg_groups = 2; sugg_sector_size = 50; }
|
---|
747 | else if (input_size < 25000) { sugg_groups = 3; sugg_sector_size = 50; }
|
---|
748 | else if (input_size < 50000) { sugg_groups = 6; sugg_sector_size = 40; }
|
---|
749 | else if (input_size < 100000) { sugg_groups = 8; sugg_sector_size = 40; }
|
---|
750 | else { sugg_groups = 8; sugg_sector_size = 40; }
|
---|
751 | break;
|
---|
752 | case ADDR_SECTION:
|
---|
753 | if (input_size < 9000) { sugg_groups = 1; sugg_sector_size = 0; }
|
---|
754 | else if (input_size < 25000) { sugg_groups = 2; sugg_sector_size = 130; }
|
---|
755 | else if (input_size < 50000) { sugg_groups = 3; sugg_sector_size = 130; }
|
---|
756 | else if (input_size < 100000) { sugg_groups = 5; sugg_sector_size = 130; }
|
---|
757 | else { sugg_groups = 7; sugg_sector_size = 130; }
|
---|
758 | break;
|
---|
759 | }
|
---|
760 |
|
---|
761 | if (cfg_groups == 0)
|
---|
762 | {
|
---|
763 | cfg_groups = sugg_groups;
|
---|
764 | }
|
---|
765 |
|
---|
766 | if (cfg_sector_size == 0)
|
---|
767 | {
|
---|
768 | cfg_sector_size = sugg_sector_size;
|
---|
769 | }
|
---|
770 | }
|
---|
771 |
|
---|
772 | if (cfg_groups != 1 && cfg_sector_size == 0)
|
---|
773 | {
|
---|
774 | switch (cfg->data_type)
|
---|
775 | {
|
---|
776 | case DATA_SECTION:
|
---|
777 | cfg_sector_size = 20;
|
---|
778 | break;
|
---|
779 | case INST_SECTION:
|
---|
780 | cfg_sector_size = 50;
|
---|
781 | break;
|
---|
782 | case ADDR_SECTION:
|
---|
783 | cfg_sector_size = 130;
|
---|
784 | break;
|
---|
785 | }
|
---|
786 | }
|
---|
787 |
|
---|
788 | (*ret_groups) = cfg_groups;
|
---|
789 | (*ret_sector_size) = cfg_sector_size;
|
---|
790 |
|
---|
791 | XD3_ASSERT (cfg_groups > 0 && cfg_groups <= DJW_MAX_GROUPS);
|
---|
792 | XD3_ASSERT (cfg_groups == 1 || (cfg_sector_size >= DJW_SECTORSZ_MULT && cfg_sector_size <= DJW_SECTORSZ_MAX));
|
---|
793 |
|
---|
794 | return 0;
|
---|
795 | }
|
---|
796 |
|
---|
797 | static int
|
---|
798 | xd3_real_encode_huff (xd3_stream *stream,
|
---|
799 | djw_stream *h,
|
---|
800 | xd3_output *input,
|
---|
801 | xd3_output *output,
|
---|
802 | xd3_sec_cfg *cfg)
|
---|
803 | {
|
---|
804 | int ret;
|
---|
805 | usize_t groups, sector_size;
|
---|
806 | bit_state bstate = BIT_STATE_ENCODE_INIT;
|
---|
807 | xd3_output *in;
|
---|
808 | int encode_bits;
|
---|
809 | usize_t input_bits;
|
---|
810 | usize_t input_bytes;
|
---|
811 | usize_t initial_offset = output->next;
|
---|
812 | djw_weight real_freq[ALPHABET_SIZE];
|
---|
813 | uint8_t *gbest = NULL; /* Dynamic allocations: could put these in djw_stream. */
|
---|
814 | uint8_t *gbest_mtf = NULL;
|
---|
815 |
|
---|
816 | input_bytes = djw_count_freqs (real_freq, input);
|
---|
817 | input_bits = input_bytes * 8;
|
---|
818 |
|
---|
819 | XD3_ASSERT (input_bytes > 0);
|
---|
820 |
|
---|
821 | if ((ret = xd3_encode_howmany_groups (stream, cfg, input_bytes, & groups, & sector_size)))
|
---|
822 | {
|
---|
823 | return ret;
|
---|
824 | }
|
---|
825 |
|
---|
826 | if (0)
|
---|
827 | {
|
---|
828 | regroup:
|
---|
829 | /* Sometimes we dynamically decide there are too many groups. Arrive here. */
|
---|
830 | output->next = initial_offset;
|
---|
831 | xd3_bit_state_encode_init (& bstate);
|
---|
832 | }
|
---|
833 |
|
---|
834 | /* Encode: # of groups (3 bits) */
|
---|
835 | if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GROUP_BITS, groups-1))) { goto failure; }
|
---|
836 |
|
---|
837 | if (groups == 1)
|
---|
838 | {
|
---|
839 | /* Single Huffman group. */
|
---|
840 | uint code[ALPHABET_SIZE]; /* Codes */
|
---|
841 | IF_TUNE (uint8_t *clen = tune_clen[0];)
|
---|
842 | IF_NTUNE (uint8_t clen[ALPHABET_SIZE];)
|
---|
843 | uint8_t prefix_mtfsym[ALPHABET_SIZE];
|
---|
844 | djw_prefix prefix;
|
---|
845 |
|
---|
846 | encode_bits =
|
---|
847 | djw_build_prefix (real_freq, clen, ALPHABET_SIZE, DJW_MAX_CODELEN);
|
---|
848 | djw_build_codes (code, clen, ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN));
|
---|
849 |
|
---|
850 | if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; }
|
---|
851 |
|
---|
852 | /* Encode: prefix */
|
---|
853 | prefix.mtfsym = prefix_mtfsym;
|
---|
854 | prefix.symbol = clen;
|
---|
855 | prefix.scount = ALPHABET_SIZE;
|
---|
856 |
|
---|
857 | if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; }
|
---|
858 |
|
---|
859 | if (encode_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; }
|
---|
860 |
|
---|
861 | IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate));
|
---|
862 | IF_TUNE (tune_select_bits = 0);
|
---|
863 | IF_TUNE (tune_encode_bits = encode_bits);
|
---|
864 |
|
---|
865 | /* Encode: data */
|
---|
866 | for (in = input; in; in = in->next_page)
|
---|
867 | {
|
---|
868 | const uint8_t *p = in->base;
|
---|
869 | const uint8_t *p_max = p + in->next;
|
---|
870 |
|
---|
871 | do
|
---|
872 | {
|
---|
873 | usize_t sym = *p++;
|
---|
874 | usize_t bits = clen[sym];
|
---|
875 |
|
---|
876 | IF_DEBUG (encode_bits -= bits);
|
---|
877 |
|
---|
878 | if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code[sym]))) { goto failure; }
|
---|
879 | }
|
---|
880 | while (p < p_max);
|
---|
881 | }
|
---|
882 |
|
---|
883 | XD3_ASSERT (encode_bits == 0);
|
---|
884 | }
|
---|
885 | else
|
---|
886 | {
|
---|
887 | /* DJW Huffman */
|
---|
888 | djw_weight evolve_freq[DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
889 | #if TUNE_HUFFMAN == 0
|
---|
890 | uint8_t evolve_clen[DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
891 | #else
|
---|
892 | #define evolve_clen tune_clen
|
---|
893 | #endif
|
---|
894 | djw_weight left = input_bytes;
|
---|
895 | int gp;
|
---|
896 | int niter = 0;
|
---|
897 | usize_t select_bits;
|
---|
898 | usize_t sym1 = 0, sym2 = 0, s;
|
---|
899 | usize_t gcost[DJW_MAX_GROUPS];
|
---|
900 | uint gbest_code[DJW_MAX_GROUPS+2];
|
---|
901 | uint8_t gbest_clen[DJW_MAX_GROUPS+2];
|
---|
902 | usize_t gbest_max = 1 + (input_bytes - 1) / sector_size;
|
---|
903 | int best_bits = 0;
|
---|
904 | usize_t gbest_no;
|
---|
905 | usize_t gpcnt;
|
---|
906 | const uint8_t *p;
|
---|
907 | IF_DEBUG1 (usize_t gcount[DJW_MAX_GROUPS]);
|
---|
908 |
|
---|
909 | /* Encode: sector size (5 bits) */
|
---|
910 | if ((ret = xd3_encode_bits (stream, & output, & bstate,
|
---|
911 | DJW_SECTORSZ_BITS, (sector_size/DJW_SECTORSZ_MULT)-1))) { goto failure; }
|
---|
912 |
|
---|
913 | /* Dynamic allocation. */
|
---|
914 | if (gbest == NULL)
|
---|
915 | {
|
---|
916 | if ((gbest = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; }
|
---|
917 | }
|
---|
918 |
|
---|
919 | if (gbest_mtf == NULL)
|
---|
920 | {
|
---|
921 | if ((gbest_mtf = xd3_alloc (stream, gbest_max, 1)) == NULL) { ret = ENOMEM; goto failure; }
|
---|
922 | }
|
---|
923 |
|
---|
924 | /* OPT: Some of the inner loops can be optimized, as shown in bzip2 */
|
---|
925 |
|
---|
926 | /* Generate initial code length tables. */
|
---|
927 | for (gp = 0; gp < groups; gp += 1)
|
---|
928 | {
|
---|
929 | djw_weight sum = 0;
|
---|
930 | djw_weight goal = left / (groups - gp);
|
---|
931 |
|
---|
932 | IF_DEBUG1 (usize_t nz = 0);
|
---|
933 |
|
---|
934 | /* Due to the single-code granularity of this distribution, it may be that we
|
---|
935 | * can't generate a distribution for each group. In that case subtract one
|
---|
936 | * group and try again. If (inefficient), we're testing group behavior, so
|
---|
937 | * don't mess things up. */
|
---|
938 | if (goal == 0 && !cfg->inefficient)
|
---|
939 | {
|
---|
940 | IF_DEBUG1 (DP(RINT "too many groups (%u), dropping one\n", groups));
|
---|
941 | groups -= 1;
|
---|
942 | goto regroup;
|
---|
943 | }
|
---|
944 |
|
---|
945 | /* Sum == goal is possible when (cfg->inefficient)... */
|
---|
946 | while (sum < goal)
|
---|
947 | {
|
---|
948 | XD3_ASSERT (sym2 < ALPHABET_SIZE);
|
---|
949 | IF_DEBUG1 (nz += real_freq[sym2] != 0);
|
---|
950 | sum += real_freq[sym2++];
|
---|
951 | }
|
---|
952 |
|
---|
953 | IF_DEBUG1(DP(RINT "group %u has symbols %u..%u (%u non-zero) (%u/%u = %.3f)\n",
|
---|
954 | gp, sym1, sym2, nz, sum, input_bytes, sum / (double)input_bytes););
|
---|
955 |
|
---|
956 | for (s = 0; s < ALPHABET_SIZE; s += 1)
|
---|
957 | {
|
---|
958 | evolve_clen[gp][s] = (s >= sym1 && s <= sym2) ? 1 : 16;
|
---|
959 | }
|
---|
960 |
|
---|
961 | left -= sum;
|
---|
962 | sym1 = sym2+1;
|
---|
963 | }
|
---|
964 |
|
---|
965 | repeat:
|
---|
966 |
|
---|
967 | niter += 1;
|
---|
968 | gbest_no = 0;
|
---|
969 | memset (evolve_freq, 0, sizeof (evolve_freq[0]) * groups);
|
---|
970 | IF_DEBUG1 (memset (gcount, 0, sizeof (gcount[0]) * groups));
|
---|
971 |
|
---|
972 | /* For each input page (loop is irregular to allow non-pow2-size group size. */
|
---|
973 | in = input;
|
---|
974 | p = in->base;
|
---|
975 |
|
---|
976 | /* For each group-size sector. */
|
---|
977 | do
|
---|
978 | {
|
---|
979 | const uint8_t *p0 = p;
|
---|
980 | xd3_output *in0 = in;
|
---|
981 | usize_t best = 0;
|
---|
982 | usize_t winner = 0;
|
---|
983 |
|
---|
984 | /* Select best group for each sector, update evolve_freq. */
|
---|
985 | memset (gcost, 0, sizeof (gcost[0]) * groups);
|
---|
986 |
|
---|
987 | /* For each byte in sector. */
|
---|
988 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1)
|
---|
989 | {
|
---|
990 | /* For each group. */
|
---|
991 | for (gp = 0; gp < groups; gp += 1)
|
---|
992 | {
|
---|
993 | gcost[gp] += evolve_clen[gp][*p];
|
---|
994 | }
|
---|
995 |
|
---|
996 | /* Check end-of-input-page. */
|
---|
997 | # define GP_PAGE() \
|
---|
998 | if (++p - in->base == in->next) \
|
---|
999 | { \
|
---|
1000 | in = in->next_page; \
|
---|
1001 | if (in == NULL) { break; } \
|
---|
1002 | p = in->base; \
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | GP_PAGE ();
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | /* Find min cost group for this sector */
|
---|
1009 | best = -1U;
|
---|
1010 | for (gp = 0; gp < groups; gp += 1)
|
---|
1011 | {
|
---|
1012 | if (gcost[gp] < best) { best = gcost[gp]; winner = gp; }
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | XD3_ASSERT(gbest_no < gbest_max);
|
---|
1016 | gbest[gbest_no++] = winner;
|
---|
1017 | IF_DEBUG1 (gcount[winner] += 1);
|
---|
1018 |
|
---|
1019 | p = p0;
|
---|
1020 | in = in0;
|
---|
1021 |
|
---|
1022 | /* Update group frequencies. */
|
---|
1023 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1)
|
---|
1024 | {
|
---|
1025 | evolve_freq[winner][*p] += 1;
|
---|
1026 |
|
---|
1027 | GP_PAGE ();
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 | while (in != NULL);
|
---|
1031 |
|
---|
1032 | XD3_ASSERT (gbest_no == gbest_max);
|
---|
1033 |
|
---|
1034 | /* Recompute code lengths. */
|
---|
1035 | encode_bits = 0;
|
---|
1036 | for (gp = 0; gp < groups; gp += 1)
|
---|
1037 | {
|
---|
1038 | int i;
|
---|
1039 | uint8_t evolve_zero[ALPHABET_SIZE];
|
---|
1040 | int any_zeros = 0;
|
---|
1041 |
|
---|
1042 | memset (evolve_zero, 0, sizeof (evolve_zero));
|
---|
1043 |
|
---|
1044 | /* Cannot allow a zero clen when the real frequency is non-zero. Note: this
|
---|
1045 | * means we are going to encode a fairly long code for these unused entries. An
|
---|
1046 | * improvement would be to implement a NOTUSED code for when these are actually
|
---|
1047 | * zero, but this requires another data structure (evolve_zero) since we don't
|
---|
1048 | * know when evolve_freq[i] == 0... Briefly tested, looked worse. */
|
---|
1049 | for (i = 0; i < ALPHABET_SIZE; i += 1)
|
---|
1050 | {
|
---|
1051 | if (evolve_freq[gp][i] == 0 && real_freq[i] != 0)
|
---|
1052 | {
|
---|
1053 | evolve_freq[gp][i] = 1;
|
---|
1054 | evolve_zero[i] = 1;
|
---|
1055 | any_zeros = 1;
|
---|
1056 | }
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 | encode_bits += djw_build_prefix (evolve_freq[gp], evolve_clen[gp], ALPHABET_SIZE, DJW_MAX_CODELEN);
|
---|
1060 |
|
---|
1061 | /* The above faking of frequencies does not matter for the last iteration, but
|
---|
1062 | * we don't know when that is yet. However, it also breaks the encode_bits
|
---|
1063 | * computation. Necessary for accuracy, and for the (encode_bits==0) assert
|
---|
1064 | * after all bits are output. */
|
---|
1065 | if (any_zeros)
|
---|
1066 | {
|
---|
1067 | IF_DEBUG1 (usize_t save_total = encode_bits);
|
---|
1068 |
|
---|
1069 | for (i = 0; i < ALPHABET_SIZE; i += 1)
|
---|
1070 | {
|
---|
1071 | if (evolve_zero[i]) { encode_bits -= evolve_clen[gp][i]; }
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | IF_DEBUG1 (DP(RINT "evolve_zero reduced %u bits in group %u\n", save_total - encode_bits, gp));
|
---|
1075 | }
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | IF_DEBUG1(
|
---|
1079 | DP(RINT "pass %u total bits: %u group uses: ", niter, encode_bits);
|
---|
1080 | for (gp = 0; gp < groups; gp += 1) { DP(RINT "%u ", gcount[gp]); }
|
---|
1081 | DP(RINT "\n"););
|
---|
1082 |
|
---|
1083 | /* End iteration. (The following assertion proved invalid.) */
|
---|
1084 | /*XD3_ASSERT (niter == 1 || best_bits >= encode_bits);*/
|
---|
1085 |
|
---|
1086 | IF_DEBUG1 (if (niter > 1 && best_bits < encode_bits) {
|
---|
1087 | DP(RINT "iteration lost %u bits\n", encode_bits - best_bits); });
|
---|
1088 |
|
---|
1089 | if (niter == 1 || (niter < DJW_MAX_ITER && (best_bits - encode_bits) >= DJW_MIN_IMPROVEMENT))
|
---|
1090 | {
|
---|
1091 | best_bits = encode_bits;
|
---|
1092 | goto repeat;
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | /* Efficiency check. */
|
---|
1096 | if (encode_bits + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; }
|
---|
1097 |
|
---|
1098 | IF_DEBUG1 (DP(RINT "djw compression: %u -> %0.3f\n", input_bytes, encode_bits / 8.0));
|
---|
1099 |
|
---|
1100 | /* Encode: prefix */
|
---|
1101 | {
|
---|
1102 | uint8_t prefix_symbol[DJW_MAX_GROUPS * ALPHABET_SIZE];
|
---|
1103 | uint8_t prefix_mtfsym[DJW_MAX_GROUPS * ALPHABET_SIZE];
|
---|
1104 | uint8_t prefix_repcnt[DJW_MAX_GROUPS * ALPHABET_SIZE];
|
---|
1105 | djw_prefix prefix;
|
---|
1106 |
|
---|
1107 | prefix.symbol = prefix_symbol;
|
---|
1108 | prefix.mtfsym = prefix_mtfsym;
|
---|
1109 | prefix.repcnt = prefix_repcnt;
|
---|
1110 |
|
---|
1111 | djw_compute_multi_prefix (groups, evolve_clen, & prefix);
|
---|
1112 | if ((ret = djw_encode_prefix (stream, & output, & bstate, & prefix))) { goto failure; }
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | /* Encode: selector frequencies */
|
---|
1116 | {
|
---|
1117 | djw_weight gbest_freq[DJW_MAX_GROUPS+1];
|
---|
1118 | djw_prefix gbest_prefix;
|
---|
1119 | usize_t i;
|
---|
1120 |
|
---|
1121 | gbest_prefix.scount = gbest_no;
|
---|
1122 | gbest_prefix.symbol = gbest;
|
---|
1123 | gbest_prefix.mtfsym = gbest_mtf;
|
---|
1124 |
|
---|
1125 | djw_compute_selector_1_2 (& gbest_prefix, groups, gbest_freq);
|
---|
1126 |
|
---|
1127 | select_bits =
|
---|
1128 | djw_build_prefix (gbest_freq, gbest_clen, groups+1, DJW_MAX_GBCLEN);
|
---|
1129 | djw_build_codes (gbest_code, gbest_clen, groups+1 DEBUG_ARG (DJW_MAX_GBCLEN));
|
---|
1130 |
|
---|
1131 | IF_TUNE (tune_prefix_bits = xd3_bitsof_output (output, & bstate));
|
---|
1132 | IF_TUNE (tune_select_bits = select_bits);
|
---|
1133 | IF_TUNE (tune_encode_bits = encode_bits);
|
---|
1134 |
|
---|
1135 | for (i = 0; i < groups+1; i += 1)
|
---|
1136 | {
|
---|
1137 | if ((ret = xd3_encode_bits (stream, & output, & bstate, DJW_GBCLEN_BITS, gbest_clen[i]))) { goto failure; }
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | for (i = 0; i < gbest_prefix.mcount; i += 1)
|
---|
1141 | {
|
---|
1142 | usize_t gp_mtf = gbest_mtf[i];
|
---|
1143 | usize_t gp_sel_bits = gbest_clen[gp_mtf];
|
---|
1144 | usize_t gp_sel_code = gbest_code[gp_mtf];
|
---|
1145 |
|
---|
1146 | XD3_ASSERT (gp_mtf < groups+1);
|
---|
1147 |
|
---|
1148 | if ((ret = xd3_encode_bits (stream, & output, & bstate, gp_sel_bits, gp_sel_code))) { goto failure; }
|
---|
1149 |
|
---|
1150 | IF_DEBUG (select_bits -= gp_sel_bits);
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 | XD3_ASSERT (select_bits == 0);
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /* Efficiency check. */
|
---|
1157 | if (encode_bits + select_bits + (8 * output->next) + EFFICIENCY_BITS >= input_bits && ! cfg->inefficient) { goto nosecond; }
|
---|
1158 |
|
---|
1159 | /* Encode: data */
|
---|
1160 | {
|
---|
1161 | uint evolve_code[DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
1162 | usize_t sector = 0;
|
---|
1163 |
|
---|
1164 | /* Build code tables for each group. */
|
---|
1165 | for (gp = 0; gp < groups; gp += 1)
|
---|
1166 | {
|
---|
1167 | djw_build_codes (evolve_code[gp], evolve_clen[gp], ALPHABET_SIZE DEBUG_ARG (DJW_MAX_CODELEN));
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | /* Now loop over the input. */
|
---|
1171 | in = input;
|
---|
1172 | p = in->base;
|
---|
1173 |
|
---|
1174 | do
|
---|
1175 | {
|
---|
1176 | /* For each sector. */
|
---|
1177 | usize_t gp_best = gbest[sector];
|
---|
1178 | uint *gp_codes = evolve_code[gp_best];
|
---|
1179 | uint8_t *gp_clens = evolve_clen[gp_best];
|
---|
1180 |
|
---|
1181 | XD3_ASSERT (sector < gbest_no);
|
---|
1182 |
|
---|
1183 | sector += 1;
|
---|
1184 |
|
---|
1185 | /* Encode the sector data. */
|
---|
1186 | for (gpcnt = 0; gpcnt < sector_size; gpcnt += 1)
|
---|
1187 | {
|
---|
1188 | usize_t sym = *p;
|
---|
1189 | usize_t bits = gp_clens[sym];
|
---|
1190 | usize_t code = gp_codes[sym];
|
---|
1191 |
|
---|
1192 | IF_DEBUG (encode_bits -= bits);
|
---|
1193 |
|
---|
1194 | if ((ret = xd3_encode_bits (stream, & output, & bstate, bits, code))) { goto failure; }
|
---|
1195 |
|
---|
1196 | GP_PAGE ();
|
---|
1197 | }
|
---|
1198 | }
|
---|
1199 | while (in != NULL);
|
---|
1200 |
|
---|
1201 | XD3_ASSERT (select_bits == 0);
|
---|
1202 | XD3_ASSERT (encode_bits == 0);
|
---|
1203 |
|
---|
1204 | #undef evolve_clen
|
---|
1205 | }
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | ret = xd3_flush_bits (stream, & output, & bstate);
|
---|
1209 |
|
---|
1210 | if (0)
|
---|
1211 | {
|
---|
1212 | nosecond:
|
---|
1213 | stream->msg = "secondary compression was inefficient";
|
---|
1214 | ret = XD3_NOSECOND;
|
---|
1215 | }
|
---|
1216 |
|
---|
1217 | failure:
|
---|
1218 |
|
---|
1219 | xd3_free (stream, gbest);
|
---|
1220 | xd3_free (stream, gbest_mtf);
|
---|
1221 | return ret;
|
---|
1222 | }
|
---|
1223 | #endif /* XD3_ENCODER */
|
---|
1224 |
|
---|
1225 | /*********************************************************************/
|
---|
1226 | /* DECODE */
|
---|
1227 | /*********************************************************************/
|
---|
1228 |
|
---|
1229 | static void
|
---|
1230 | djw_build_decoder (xd3_stream *stream,
|
---|
1231 | usize_t asize,
|
---|
1232 | usize_t abs_max,
|
---|
1233 | const uint8_t *clen,
|
---|
1234 | uint8_t *inorder,
|
---|
1235 | uint *base,
|
---|
1236 | uint *limit,
|
---|
1237 | uint *min_clenp,
|
---|
1238 | uint *max_clenp)
|
---|
1239 | {
|
---|
1240 | int i, l;
|
---|
1241 | const uint8_t *ci;
|
---|
1242 | uint nr_clen [DJW_MAX_CODELEN+2];
|
---|
1243 | uint tmp_base[DJW_MAX_CODELEN+2];
|
---|
1244 | int min_clen;
|
---|
1245 | int max_clen;
|
---|
1246 |
|
---|
1247 | /* Assumption: the two temporary arrays are large enough to hold abs_max. */
|
---|
1248 | XD3_ASSERT (abs_max <= DJW_MAX_CODELEN);
|
---|
1249 |
|
---|
1250 | /* This looks something like the start of zlib's inftrees.c */
|
---|
1251 | memset (nr_clen, 0, sizeof (nr_clen[0]) * (abs_max+1));
|
---|
1252 |
|
---|
1253 | /* Count number of each code length */
|
---|
1254 | i = asize;
|
---|
1255 | ci = clen;
|
---|
1256 | do
|
---|
1257 | {
|
---|
1258 | /* Caller _must_ check that values are in-range. Most of the time
|
---|
1259 | * the caller decodes a specific number of bits, which imply the max value, and the
|
---|
1260 | * other time the caller decodes a huffman value, which must be in-range. Therefore,
|
---|
1261 | * its an assertion and this function cannot otherwise fail. */
|
---|
1262 | XD3_ASSERT (*ci <= abs_max);
|
---|
1263 |
|
---|
1264 | nr_clen[*ci++]++;
|
---|
1265 | }
|
---|
1266 | while (--i != 0);
|
---|
1267 |
|
---|
1268 | /* Compute min, max. */
|
---|
1269 | for (i = 1; i <= abs_max; i += 1) { if (nr_clen[i]) { break; } }
|
---|
1270 | min_clen = i;
|
---|
1271 | for (i = abs_max; i != 0; i -= 1) { if (nr_clen[i]) { break; } }
|
---|
1272 | max_clen = i;
|
---|
1273 |
|
---|
1274 | /* Fill the BASE, LIMIT table. */
|
---|
1275 | tmp_base[min_clen] = 0;
|
---|
1276 | base[min_clen] = 0;
|
---|
1277 | limit[min_clen] = nr_clen[min_clen] - 1;
|
---|
1278 | for (i = min_clen + 1; i <= max_clen; i += 1)
|
---|
1279 | {
|
---|
1280 | uint last_limit = ((limit[i-1] + 1) << 1);
|
---|
1281 | tmp_base[i] = tmp_base[i-1] + nr_clen[i-1];
|
---|
1282 | limit[i] = last_limit + nr_clen[i] - 1;
|
---|
1283 | base[i] = last_limit - tmp_base[i];
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | /* Fill the inorder array, canonically ordered codes. */
|
---|
1287 | ci = clen;
|
---|
1288 | for (i = 0; i < asize; i += 1)
|
---|
1289 | {
|
---|
1290 | if ((l = *ci++) != 0)
|
---|
1291 | {
|
---|
1292 | inorder[tmp_base[l]++] = i;
|
---|
1293 | }
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | *min_clenp = min_clen;
|
---|
1297 | *max_clenp = max_clen;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | static INLINE int
|
---|
1301 | djw_decode_symbol (xd3_stream *stream,
|
---|
1302 | bit_state *bstate,
|
---|
1303 | const uint8_t **input,
|
---|
1304 | const uint8_t *input_end,
|
---|
1305 | const uint8_t *inorder,
|
---|
1306 | const uint *base,
|
---|
1307 | const uint *limit,
|
---|
1308 | uint min_clen,
|
---|
1309 | uint max_clen,
|
---|
1310 | usize_t *sym,
|
---|
1311 | usize_t max_sym)
|
---|
1312 | {
|
---|
1313 | usize_t code = 0;
|
---|
1314 | usize_t bits = 0;
|
---|
1315 |
|
---|
1316 | /* OPT: Supposedly a small lookup table improves speed here... */
|
---|
1317 |
|
---|
1318 | /* Code outline is similar to xd3_decode_bits... */
|
---|
1319 | if (bstate->cur_mask == 0x100) { goto next_byte; }
|
---|
1320 |
|
---|
1321 | for (;;)
|
---|
1322 | {
|
---|
1323 | do
|
---|
1324 | {
|
---|
1325 | if (bits == max_clen) { goto corrupt; }
|
---|
1326 |
|
---|
1327 | bits += 1;
|
---|
1328 | code = (code << 1);
|
---|
1329 |
|
---|
1330 | if (bstate->cur_byte & bstate->cur_mask) { code |= 1; }
|
---|
1331 |
|
---|
1332 | bstate->cur_mask <<= 1;
|
---|
1333 |
|
---|
1334 | if (bits >= min_clen && code <= limit[bits]) { goto done; }
|
---|
1335 | }
|
---|
1336 | while (bstate->cur_mask != 0x100);
|
---|
1337 |
|
---|
1338 | next_byte:
|
---|
1339 |
|
---|
1340 | if (*input == input_end)
|
---|
1341 | {
|
---|
1342 | stream->msg = "secondary decoder end of input";
|
---|
1343 | return XD3_INTERNAL;
|
---|
1344 | }
|
---|
1345 |
|
---|
1346 | bstate->cur_byte = *(*input)++;
|
---|
1347 | bstate->cur_mask = 1;
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | done:
|
---|
1351 |
|
---|
1352 | if (base[bits] <= code)
|
---|
1353 | {
|
---|
1354 | usize_t offset = code - base[bits];
|
---|
1355 |
|
---|
1356 | if (offset <= max_sym)
|
---|
1357 | {
|
---|
1358 | IF_DEBUG2 (DP(RINT "(j) %u ", code));
|
---|
1359 | *sym = inorder[offset];
|
---|
1360 | return 0;
|
---|
1361 | }
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | corrupt:
|
---|
1365 | stream->msg = "secondary decoder invalid code";
|
---|
1366 | return XD3_INTERNAL;
|
---|
1367 | }
|
---|
1368 |
|
---|
1369 | static int
|
---|
1370 | djw_decode_clclen (xd3_stream *stream,
|
---|
1371 | bit_state *bstate,
|
---|
1372 | const uint8_t **input,
|
---|
1373 | const uint8_t *input_end,
|
---|
1374 | uint8_t *cl_inorder,
|
---|
1375 | uint *cl_base,
|
---|
1376 | uint *cl_limit,
|
---|
1377 | uint *cl_minlen,
|
---|
1378 | uint *cl_maxlen,
|
---|
1379 | uint8_t *cl_mtf)
|
---|
1380 | {
|
---|
1381 | int ret;
|
---|
1382 | uint8_t cl_clen[DJW_TOTAL_CODES];
|
---|
1383 | usize_t num_codes, value;
|
---|
1384 | int i;
|
---|
1385 |
|
---|
1386 | /* How many extra code lengths to encode. */
|
---|
1387 | if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_EXTRA_CODE_BITS, & num_codes))) { return ret; }
|
---|
1388 |
|
---|
1389 | num_codes += DJW_EXTRA_12OFFSET;
|
---|
1390 |
|
---|
1391 | /* Read num_codes. */
|
---|
1392 | for (i = 0; i < num_codes; i += 1)
|
---|
1393 | {
|
---|
1394 | if ((ret = xd3_decode_bits (stream, bstate, input, input_end, DJW_CLCLEN_BITS, & value))) { return ret; }
|
---|
1395 |
|
---|
1396 | cl_clen[i] = value;
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | /* Set the rest to zero. */
|
---|
1400 | for (; i < DJW_TOTAL_CODES; i += 1) { cl_clen[i] = 0; }
|
---|
1401 |
|
---|
1402 | /* No need to check for in-range clen values, because: */
|
---|
1403 | XD3_ASSERT (1 << DJW_CLCLEN_BITS == DJW_MAX_CLCLEN + 1);
|
---|
1404 |
|
---|
1405 | /* Build the code-length decoder. */
|
---|
1406 | djw_build_decoder (stream, DJW_TOTAL_CODES, DJW_MAX_CLCLEN,
|
---|
1407 | cl_clen, cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen);
|
---|
1408 |
|
---|
1409 | /* Initialize the MTF state. */
|
---|
1410 | djw_init_clen_mtf_1_2 (cl_mtf);
|
---|
1411 |
|
---|
1412 | return 0;
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 | static INLINE int
|
---|
1416 | djw_decode_1_2 (xd3_stream *stream,
|
---|
1417 | bit_state *bstate,
|
---|
1418 | const uint8_t **input,
|
---|
1419 | const uint8_t *input_end,
|
---|
1420 | const uint8_t *inorder,
|
---|
1421 | const uint *base,
|
---|
1422 | const uint *limit,
|
---|
1423 | const uint *minlen,
|
---|
1424 | const uint *maxlen,
|
---|
1425 | uint8_t *mtfvals,
|
---|
1426 | usize_t elts,
|
---|
1427 | usize_t skip_offset,
|
---|
1428 | uint8_t *values)
|
---|
1429 | {
|
---|
1430 | usize_t n = 0, rep = 0, mtf = 0, s = 0;
|
---|
1431 | int ret;
|
---|
1432 |
|
---|
1433 | while (n < elts)
|
---|
1434 | {
|
---|
1435 | /* Special case inside generic code: CLEN only: If not the first group, we already
|
---|
1436 | * know the zero frequencies. */
|
---|
1437 | if (skip_offset != 0 && n >= skip_offset && values[n-skip_offset] == 0)
|
---|
1438 | {
|
---|
1439 | values[n++] = 0;
|
---|
1440 | continue;
|
---|
1441 | }
|
---|
1442 |
|
---|
1443 | /* Repeat last symbol. */
|
---|
1444 | if (rep != 0)
|
---|
1445 | {
|
---|
1446 | values[n++] = mtfvals[0];
|
---|
1447 | rep -= 1;
|
---|
1448 | continue;
|
---|
1449 | }
|
---|
1450 |
|
---|
1451 | /* Symbol following last repeat code. */
|
---|
1452 | if (mtf != 0)
|
---|
1453 | {
|
---|
1454 | usize_t sym = djw_update_mtf (mtfvals, mtf);
|
---|
1455 | values[n++] = sym;
|
---|
1456 | mtf = 0;
|
---|
1457 | continue;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | /* Decode next symbol/repeat code. */
|
---|
1461 | if ((ret = djw_decode_symbol (stream, bstate, input, input_end,
|
---|
1462 | inorder, base, limit, *minlen, *maxlen,
|
---|
1463 | & mtf, DJW_TOTAL_CODES))) { return ret; }
|
---|
1464 |
|
---|
1465 | if (mtf <= RUN_1)
|
---|
1466 | {
|
---|
1467 | /* Repetition. */
|
---|
1468 | rep = ((mtf + 1) << s);
|
---|
1469 | mtf = 0;
|
---|
1470 | s += 1;
|
---|
1471 | }
|
---|
1472 | else
|
---|
1473 | {
|
---|
1474 | /* Remove the RUN_1 MTF offset. */
|
---|
1475 | mtf -= 1;
|
---|
1476 | s = 0;
|
---|
1477 | }
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 | /* If (rep != 0) there were too many codes received. */
|
---|
1481 | if (rep != 0)
|
---|
1482 | {
|
---|
1483 | stream->msg = "secondary decoder invalid repeat code";
|
---|
1484 | return XD3_INTERNAL;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | return 0;
|
---|
1488 | }
|
---|
1489 |
|
---|
1490 | static INLINE int
|
---|
1491 | djw_decode_prefix (xd3_stream *stream,
|
---|
1492 | bit_state *bstate,
|
---|
1493 | const uint8_t **input,
|
---|
1494 | const uint8_t *input_end,
|
---|
1495 | const uint8_t *cl_inorder,
|
---|
1496 | const uint *cl_base,
|
---|
1497 | const uint *cl_limit,
|
---|
1498 | const uint *cl_minlen,
|
---|
1499 | const uint *cl_maxlen,
|
---|
1500 | uint8_t *cl_mtf,
|
---|
1501 | usize_t groups,
|
---|
1502 | uint8_t *clen)
|
---|
1503 | {
|
---|
1504 | return djw_decode_1_2 (stream, bstate, input, input_end,
|
---|
1505 | cl_inorder, cl_base, cl_limit, cl_minlen, cl_maxlen, cl_mtf,
|
---|
1506 | ALPHABET_SIZE * groups, ALPHABET_SIZE, clen);
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 | static int
|
---|
1510 | xd3_decode_huff (xd3_stream *stream,
|
---|
1511 | djw_stream *h,
|
---|
1512 | const uint8_t **input_pos,
|
---|
1513 | const uint8_t *const input_end,
|
---|
1514 | uint8_t **output_pos,
|
---|
1515 | const uint8_t *const output_end)
|
---|
1516 | {
|
---|
1517 | const uint8_t *input = *input_pos;
|
---|
1518 | uint8_t *output = *output_pos;
|
---|
1519 | bit_state bstate = BIT_STATE_DECODE_INIT;
|
---|
1520 | uint8_t *sel_group = NULL;
|
---|
1521 | usize_t groups, gp;
|
---|
1522 | usize_t output_bytes = (output_end - output);
|
---|
1523 | usize_t sector_size;
|
---|
1524 | usize_t sectors;
|
---|
1525 | int ret;
|
---|
1526 |
|
---|
1527 | /* Invalid input. */
|
---|
1528 | if (output_bytes == 0)
|
---|
1529 | {
|
---|
1530 | stream->msg = "secondary decoder invalid input";
|
---|
1531 | return XD3_INTERNAL;
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | /* Decode: number of groups */
|
---|
1535 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GROUP_BITS, & groups))) { goto fail; }
|
---|
1536 |
|
---|
1537 | groups += 1;
|
---|
1538 |
|
---|
1539 | if (groups > 1)
|
---|
1540 | {
|
---|
1541 | /* Decode: group size */
|
---|
1542 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_SECTORSZ_BITS, & sector_size))) { goto fail; }
|
---|
1543 |
|
---|
1544 | sector_size = (sector_size + 1) * DJW_SECTORSZ_MULT;
|
---|
1545 | }
|
---|
1546 | else
|
---|
1547 | {
|
---|
1548 | /* Default for groups == 1 */
|
---|
1549 | sector_size = output_bytes;
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | sectors = 1 + (output_bytes - 1) / sector_size;
|
---|
1553 |
|
---|
1554 | /* @!@ In the case of groups==1, lots of extra stack space gets used here. Could
|
---|
1555 | * dynamically allocate this memory, which would help with excess parameter passing,
|
---|
1556 | * too. Passing too many parameters in this file, simplify it! */
|
---|
1557 |
|
---|
1558 | /* Outer scope: per-group symbol decoder tables. */
|
---|
1559 | {
|
---|
1560 | uint8_t inorder[DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
1561 | uint base [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2];
|
---|
1562 | uint limit [DJW_MAX_GROUPS][DJW_MAX_CODELEN+2];
|
---|
1563 | uint minlen [DJW_MAX_GROUPS];
|
---|
1564 | uint maxlen [DJW_MAX_GROUPS];
|
---|
1565 |
|
---|
1566 | /* Nested scope: code length decoder tables. */
|
---|
1567 | {
|
---|
1568 | uint8_t clen [DJW_MAX_GROUPS][ALPHABET_SIZE];
|
---|
1569 | uint8_t cl_inorder[DJW_TOTAL_CODES];
|
---|
1570 | uint cl_base [DJW_MAX_CLCLEN+2];
|
---|
1571 | uint cl_limit [DJW_MAX_CLCLEN+2];
|
---|
1572 | uint8_t cl_mtf [DJW_TOTAL_CODES];
|
---|
1573 | uint cl_minlen;
|
---|
1574 | uint cl_maxlen;
|
---|
1575 |
|
---|
1576 | /* Compute the code length decoder. */
|
---|
1577 | if ((ret = djw_decode_clclen (stream, & bstate, & input, input_end,
|
---|
1578 | cl_inorder, cl_base, cl_limit, & cl_minlen,
|
---|
1579 | & cl_maxlen, cl_mtf))) { goto fail; }
|
---|
1580 |
|
---|
1581 | /* Now decode each group decoder. */
|
---|
1582 | if ((ret = djw_decode_prefix (stream, & bstate, & input, input_end,
|
---|
1583 | cl_inorder, cl_base, cl_limit,
|
---|
1584 | & cl_minlen, & cl_maxlen, cl_mtf,
|
---|
1585 | groups, clen[0]))) { goto fail; }
|
---|
1586 |
|
---|
1587 | /* Prepare the actual decoding tables. */
|
---|
1588 | for (gp = 0; gp < groups; gp += 1)
|
---|
1589 | {
|
---|
1590 | djw_build_decoder (stream, ALPHABET_SIZE, DJW_MAX_CODELEN,
|
---|
1591 | clen[gp], inorder[gp], base[gp], limit[gp],
|
---|
1592 | & minlen[gp], & maxlen[gp]);
|
---|
1593 | }
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | /* Decode: selector clens. */
|
---|
1597 | {
|
---|
1598 | uint8_t sel_inorder[DJW_MAX_GROUPS+2];
|
---|
1599 | uint sel_base [DJW_MAX_GBCLEN+2];
|
---|
1600 | uint sel_limit [DJW_MAX_GBCLEN+2];
|
---|
1601 | uint8_t sel_mtf [DJW_MAX_GROUPS+2];
|
---|
1602 | uint sel_minlen;
|
---|
1603 | uint sel_maxlen;
|
---|
1604 |
|
---|
1605 | /* Setup group selection. */
|
---|
1606 | if (groups > 1)
|
---|
1607 | {
|
---|
1608 | uint8_t sel_clen[DJW_MAX_GROUPS+1];
|
---|
1609 |
|
---|
1610 | for (gp = 0; gp < groups+1; gp += 1)
|
---|
1611 | {
|
---|
1612 | usize_t value;
|
---|
1613 |
|
---|
1614 | if ((ret = xd3_decode_bits (stream, & bstate, & input, input_end, DJW_GBCLEN_BITS, & value))) { goto fail; }
|
---|
1615 |
|
---|
1616 | sel_clen[gp] = value;
|
---|
1617 | sel_mtf[gp] = gp;
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | if ((sel_group = xd3_alloc (stream, sectors, 1)) == NULL) { ret = ENOMEM; goto fail; }
|
---|
1621 |
|
---|
1622 | djw_build_decoder (stream, groups+1, DJW_MAX_GBCLEN, sel_clen,
|
---|
1623 | sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen);
|
---|
1624 |
|
---|
1625 | if ((ret = djw_decode_1_2 (stream, & bstate, & input, input_end,
|
---|
1626 | sel_inorder, sel_base, sel_limit, & sel_minlen, & sel_maxlen, sel_mtf,
|
---|
1627 | sectors, 0, sel_group))) { goto fail; }
|
---|
1628 | }
|
---|
1629 |
|
---|
1630 | /* Now decode each sector. */
|
---|
1631 | {
|
---|
1632 | uint8_t *gp_inorder = inorder[0]; /* Initialize for (groups==1) case. */
|
---|
1633 | uint *gp_base = base[0];
|
---|
1634 | uint *gp_limit = limit[0];
|
---|
1635 | uint gp_minlen = minlen[0];
|
---|
1636 | uint gp_maxlen = maxlen[0];
|
---|
1637 | usize_t c;
|
---|
1638 |
|
---|
1639 | for (c = 0; c < sectors; c += 1)
|
---|
1640 | {
|
---|
1641 | usize_t n;
|
---|
1642 |
|
---|
1643 | if (groups >= 2)
|
---|
1644 | {
|
---|
1645 | gp = sel_group[c];
|
---|
1646 |
|
---|
1647 | XD3_ASSERT (gp < groups);
|
---|
1648 |
|
---|
1649 | gp_inorder = inorder[gp];
|
---|
1650 | gp_base = base[gp];
|
---|
1651 | gp_limit = limit[gp];
|
---|
1652 | gp_minlen = minlen[gp];
|
---|
1653 | gp_maxlen = maxlen[gp];
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | XD3_ASSERT (output_end - output > 0);
|
---|
1657 |
|
---|
1658 | /* Decode next sector. */
|
---|
1659 | n = min (sector_size, (usize_t) (output_end - output));
|
---|
1660 |
|
---|
1661 | do
|
---|
1662 | {
|
---|
1663 | usize_t sym;
|
---|
1664 |
|
---|
1665 | if ((ret = djw_decode_symbol (stream, & bstate, & input, input_end,
|
---|
1666 | gp_inorder, gp_base, gp_limit, gp_minlen, gp_maxlen,
|
---|
1667 | & sym, ALPHABET_SIZE))) { goto fail; }
|
---|
1668 |
|
---|
1669 | *output++ = sym;
|
---|
1670 | }
|
---|
1671 | while (--n);
|
---|
1672 | }
|
---|
1673 | }
|
---|
1674 | }
|
---|
1675 | }
|
---|
1676 |
|
---|
1677 | IF_REGRESSION (if ((ret = xd3_test_clean_bits (stream, & bstate))) { goto fail; });
|
---|
1678 | XD3_ASSERT (ret == 0);
|
---|
1679 |
|
---|
1680 | fail:
|
---|
1681 | xd3_free (stream, sel_group);
|
---|
1682 |
|
---|
1683 | (*input_pos) = input;
|
---|
1684 | (*output_pos) = output;
|
---|
1685 | return ret;
|
---|
1686 | }
|
---|
1687 |
|
---|
1688 | /*********************************************************************/
|
---|
1689 | /* TUNING */
|
---|
1690 | /*********************************************************************/
|
---|
1691 |
|
---|
1692 | #if TUNE_HUFFMAN && XD3_ENCODER
|
---|
1693 | #include <stdio.h>
|
---|
1694 | #include "xdelta3-fgk.h"
|
---|
1695 |
|
---|
1696 | static uint
|
---|
1697 | xd3_bitsof_output (xd3_output *output, bit_state *bstate)
|
---|
1698 | {
|
---|
1699 | uint x = 0;
|
---|
1700 | uint m = bstate->cur_mask;
|
---|
1701 |
|
---|
1702 | while (m != 1)
|
---|
1703 | {
|
---|
1704 | x += 1;
|
---|
1705 | m >>= 1;
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 | return x + 8 * xd3_sizeof_output (output);
|
---|
1709 | }
|
---|
1710 |
|
---|
1711 | static const char* xd3_sect_type (xd3_section_type type)
|
---|
1712 | {
|
---|
1713 | switch (type)
|
---|
1714 | {
|
---|
1715 | case DATA_SECTION: return "DATA";
|
---|
1716 | case INST_SECTION: return "INST";
|
---|
1717 | case ADDR_SECTION: return "ADDR";
|
---|
1718 | }
|
---|
1719 | abort ();
|
---|
1720 | }
|
---|
1721 |
|
---|
1722 | static int
|
---|
1723 | xd3_encode_huff (xd3_stream *stream,
|
---|
1724 | djw_stream *h,
|
---|
1725 | xd3_output *input,
|
---|
1726 | xd3_output *unused_output,
|
---|
1727 | xd3_sec_cfg *cfg)
|
---|
1728 | {
|
---|
1729 | int ret = 0;
|
---|
1730 | int input_size = xd3_sizeof_output (input);
|
---|
1731 | static int hdr = 0;
|
---|
1732 | const char *sect_type = xd3_sect_type (cfg->data_type);
|
---|
1733 | xd3_output *output;
|
---|
1734 | usize_t output_size;
|
---|
1735 |
|
---|
1736 | if (hdr == 0) { hdr = 1; DP(RINT "____ SECT INSZ SECTORSZ GPNO OUTSZ PREFIX SELECT ENCODE\n"); }
|
---|
1737 |
|
---|
1738 | DP(RINT "SECTION %s %u\n", sect_type, input_size);
|
---|
1739 |
|
---|
1740 | {
|
---|
1741 | int gp, i;
|
---|
1742 | int best_size = 99999999;
|
---|
1743 | usize_t best_prefix = 0, best_select = 0, best_encode = 0, best_sector_size = 0;
|
---|
1744 | int best_gpno = -1;
|
---|
1745 | const char *t12 = "12";
|
---|
1746 | usize_t clen_count[DJW_MAX_CODELEN+1];
|
---|
1747 | djw_weight best_freq[DJW_TOTAL_CODES];
|
---|
1748 |
|
---|
1749 | for (cfg->ngroups = 1; cfg->ngroups <= /*1*/ DJW_MAX_GROUPS; cfg->ngroups += 1)
|
---|
1750 | {
|
---|
1751 | for (cfg->sector_size = 10; cfg->sector_size <= DJW_SECTORSZ_MAX; cfg->sector_size += 10)
|
---|
1752 | {
|
---|
1753 | output = xd3_alloc_output (stream, NULL);
|
---|
1754 |
|
---|
1755 | if ((ret = xd3_real_encode_huff (stream, h, input, output, cfg))) { goto fail; }
|
---|
1756 |
|
---|
1757 | output_size = xd3_sizeof_output (output);
|
---|
1758 |
|
---|
1759 | if (output_size < best_size)
|
---|
1760 | {
|
---|
1761 | best_size = output_size;
|
---|
1762 | best_gpno = cfg->ngroups;
|
---|
1763 | best_prefix = tune_prefix_bits;
|
---|
1764 | best_select = tune_select_bits;
|
---|
1765 | best_encode = tune_encode_bits;
|
---|
1766 | best_sector_size = cfg->sector_size;
|
---|
1767 | memset (clen_count, 0, sizeof (clen_count));
|
---|
1768 |
|
---|
1769 | for (gp = 0; gp < cfg->ngroups; gp += 1)
|
---|
1770 | {
|
---|
1771 | for (i = 0; i < ALPHABET_SIZE; i += 1)
|
---|
1772 | {
|
---|
1773 | clen_count[tune_clen[gp][i]] += 1;
|
---|
1774 | }
|
---|
1775 | }
|
---|
1776 |
|
---|
1777 | memcpy (best_freq, tune_freq, sizeof (tune_freq));
|
---|
1778 |
|
---|
1779 | XD3_ASSERT (sizeof (tune_freq) == sizeof (mtf_freq));
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | if (1)
|
---|
1783 | {
|
---|
1784 | DP(RINT "COMP%s %u %u %u %u %u %u\n",
|
---|
1785 | t12, cfg->ngroups, cfg->sector_size,
|
---|
1786 | output_size, tune_prefix_bits, tune_select_bits, tune_encode_bits);
|
---|
1787 | }
|
---|
1788 | else
|
---|
1789 | {
|
---|
1790 | fail:
|
---|
1791 | DP(RINT "COMP%s %u %u %u %u %u %u\n",
|
---|
1792 | t12, cfg->ngroups, cfg->sector_size,
|
---|
1793 | input_size, 0, 0, 0);
|
---|
1794 | }
|
---|
1795 |
|
---|
1796 | xd3_free_output (stream, output);
|
---|
1797 |
|
---|
1798 | XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND);
|
---|
1799 |
|
---|
1800 | if (cfg->ngroups == 1) { break; }
|
---|
1801 | }
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | if (best_gpno > 0)
|
---|
1805 | {
|
---|
1806 | DP(RINT "BEST%s %u %u %u %u %u %u\n",
|
---|
1807 | t12, best_gpno, best_sector_size,
|
---|
1808 | best_size, best_prefix, best_select, best_encode);
|
---|
1809 |
|
---|
1810 | #if 0
|
---|
1811 | DP(RINT "CLEN%s ", t12);
|
---|
1812 | for (i = 1; i <= DJW_MAX_CODELEN; i += 1)
|
---|
1813 | {
|
---|
1814 | DP(RINT "%u ", clen_count[i]);
|
---|
1815 | }
|
---|
1816 | DP(RINT "\n");
|
---|
1817 |
|
---|
1818 | DP(RINT "FREQ%s ", t12);
|
---|
1819 | for (i = 0; i < DJW_TOTAL_CODES; i += 1)
|
---|
1820 | {
|
---|
1821 | DP(RINT "%u ", tune_freq[i]);
|
---|
1822 | }
|
---|
1823 | DP(RINT "\n");
|
---|
1824 | #endif
|
---|
1825 | }
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | /* Compare to split single-table windows. */
|
---|
1829 | {
|
---|
1830 | int parts, i;
|
---|
1831 |
|
---|
1832 | cfg->ngroups = 1;
|
---|
1833 |
|
---|
1834 | for (parts = 2; parts <= DJW_MAX_GROUPS; parts += 1)
|
---|
1835 | {
|
---|
1836 | usize_t part_size = input_size / parts;
|
---|
1837 | xd3_output *inp = input, *partin, *partin_head;
|
---|
1838 | usize_t off = 0;
|
---|
1839 | usize_t part_total = 0;
|
---|
1840 |
|
---|
1841 | if (part_size < 1000) { break; }
|
---|
1842 |
|
---|
1843 | for (i = 0; i < parts; i += 1)
|
---|
1844 | {
|
---|
1845 | usize_t inc;
|
---|
1846 |
|
---|
1847 | partin = partin_head = xd3_alloc_output (stream, NULL);
|
---|
1848 | output = xd3_alloc_output (stream, NULL);
|
---|
1849 |
|
---|
1850 | for (inc = 0; ((i < parts-1) && inc < part_size) ||
|
---|
1851 | ((i == parts-1) && inp != NULL); )
|
---|
1852 | {
|
---|
1853 | usize_t take;
|
---|
1854 |
|
---|
1855 | if (i < parts-1)
|
---|
1856 | {
|
---|
1857 | take = min (part_size - inc, inp->next - off);
|
---|
1858 | }
|
---|
1859 | else
|
---|
1860 | {
|
---|
1861 | take = inp->next - off;
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | ret = xd3_emit_bytes (stream, & partin, inp->base + off, take);
|
---|
1865 |
|
---|
1866 | off += take;
|
---|
1867 | inc += take;
|
---|
1868 |
|
---|
1869 | if (off == inp->next)
|
---|
1870 | {
|
---|
1871 | inp = inp->next_page;
|
---|
1872 | off = 0;
|
---|
1873 | }
|
---|
1874 | }
|
---|
1875 |
|
---|
1876 | ret = xd3_real_encode_huff (stream, h, partin_head, output, cfg);
|
---|
1877 |
|
---|
1878 | part_total += xd3_sizeof_output (output);
|
---|
1879 |
|
---|
1880 | xd3_free_output (stream, partin_head);
|
---|
1881 | xd3_free_output (stream, output);
|
---|
1882 |
|
---|
1883 | XD3_ASSERT (ret == 0 || ret == XD3_NOSECOND);
|
---|
1884 |
|
---|
1885 | if (ret == XD3_NOSECOND)
|
---|
1886 | {
|
---|
1887 | break;
|
---|
1888 | }
|
---|
1889 | }
|
---|
1890 |
|
---|
1891 | if (ret != XD3_NOSECOND)
|
---|
1892 | {
|
---|
1893 | DP(RINT "PART %u %u\n", parts, part_total);
|
---|
1894 | }
|
---|
1895 | }
|
---|
1896 | }
|
---|
1897 |
|
---|
1898 | /* Compare to FGK */
|
---|
1899 | {
|
---|
1900 | fgk_stream *fgk = fgk_alloc (stream);
|
---|
1901 |
|
---|
1902 | fgk_init (fgk);
|
---|
1903 |
|
---|
1904 | output = xd3_alloc_output (stream, NULL);
|
---|
1905 |
|
---|
1906 | ret = xd3_encode_fgk (stream, fgk, input, output, NULL);
|
---|
1907 |
|
---|
1908 | output_size = xd3_sizeof_output (output);
|
---|
1909 | xd3_free_output (stream, output);
|
---|
1910 | fgk_destroy (stream, fgk);
|
---|
1911 |
|
---|
1912 | XD3_ASSERT (ret == 0);
|
---|
1913 |
|
---|
1914 | DP(RINT "FGK %u\n", output_size);
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | DP(RINT "END_SECTION %s %u\n", sect_type, input_size);
|
---|
1918 |
|
---|
1919 | return 0;
|
---|
1920 | }
|
---|
1921 | #endif
|
---|
1922 |
|
---|
1923 | #endif
|
---|