[185] | 1 | /* xdelta 3 - delta compression tools and library
|
---|
| 2 | * Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald
|
---|
| 3 | *
|
---|
| 4 | * This program is free software; you can redistribute it and/or modify
|
---|
| 5 | * it under the terms of the GNU General Public License as published by
|
---|
| 6 | * the Free Software Foundation; either version 2 of the License, or
|
---|
| 7 | * (at your option) any later version.
|
---|
| 8 | *
|
---|
| 9 | * This program is distributed in the hope that it will be useful,
|
---|
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 12 | * GNU General Public License for more details.
|
---|
| 13 | *
|
---|
| 14 | * You should have received a copy of the GNU General Public License
|
---|
| 15 | * along with this program; if not, write to the Free Software
|
---|
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /* For demonstration purposes only.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #ifndef _XDELTA3_FGK_h_
|
---|
| 23 | #define _XDELTA3_FGK_h_
|
---|
| 24 |
|
---|
| 25 | /* An implementation of the FGK algorithm described by D.E. Knuth in "Dynamic Huffman
|
---|
| 26 | * Coding" in Journal of Algorithms 6. */
|
---|
| 27 |
|
---|
| 28 | /* A 32bit counter (fgk_weight) is used as the frequency counter for nodes in the huffman
|
---|
| 29 | * tree. @!@ Need to test for overflow and/or reset stats. */
|
---|
| 30 |
|
---|
| 31 | typedef struct _fgk_stream fgk_stream;
|
---|
| 32 | typedef struct _fgk_node fgk_node;
|
---|
| 33 | typedef struct _fgk_block fgk_block;
|
---|
| 34 | typedef unsigned int fgk_bit;
|
---|
| 35 | typedef uint32_t fgk_weight;
|
---|
| 36 |
|
---|
| 37 | struct _fgk_block {
|
---|
| 38 | union {
|
---|
| 39 | fgk_node *un_leader;
|
---|
| 40 | fgk_block *un_freeptr;
|
---|
| 41 | } un;
|
---|
| 42 | };
|
---|
| 43 |
|
---|
| 44 | #define block_leader un.un_leader
|
---|
| 45 | #define block_freeptr un.un_freeptr
|
---|
| 46 |
|
---|
| 47 | /* The code can also support fixed huffman encoding/decoding. */
|
---|
| 48 | #define IS_ADAPTIVE 1
|
---|
| 49 |
|
---|
| 50 | /* weight is a count of the number of times this element has been seen in the current
|
---|
| 51 | * encoding/decoding. parent, right_child, and left_child are pointers defining the tree
|
---|
| 52 | * structure. right and left point to neighbors in an ordered sequence of
|
---|
| 53 | * weights. The left child of a node is always guaranteed to have weight not greater than
|
---|
| 54 | * its sibling. fgk_blockLeader points to the element with the same weight as itself which is
|
---|
| 55 | * closest to the next increasing weight block. */
|
---|
| 56 | struct _fgk_node
|
---|
| 57 | {
|
---|
| 58 | fgk_weight weight;
|
---|
| 59 | fgk_node *parent;
|
---|
| 60 | fgk_node *left_child;
|
---|
| 61 | fgk_node *right_child;
|
---|
| 62 | fgk_node *left;
|
---|
| 63 | fgk_node *right;
|
---|
| 64 | fgk_block *my_block;
|
---|
| 65 | };
|
---|
| 66 |
|
---|
| 67 | /* alphabet_size is the a count of the number of possible leaves in the huffman tree. The
|
---|
| 68 | * number of total nodes counting internal nodes is ((2 * alphabet_size) - 1).
|
---|
| 69 | * zero_freq_count is the number of elements remaining which have zero frequency.
|
---|
| 70 | * zero_freq_exp and zero_freq_rem satisfy the equation zero_freq_count = 2^zero_freq_exp +
|
---|
| 71 | * zero_freq_rem. root_node is the root of the tree, which is initialized to a node with
|
---|
| 72 | * zero frequency and contains the 0th such element. free_node contains a pointer to the
|
---|
| 73 | * next available fgk_node space. alphabet contains all the elements and is indexed by N.
|
---|
| 74 | * remaining_zeros points to the head of the list of zeros. */
|
---|
| 75 | struct _fgk_stream
|
---|
| 76 | {
|
---|
| 77 | int alphabet_size;
|
---|
| 78 | int zero_freq_count;
|
---|
| 79 | int zero_freq_exp;
|
---|
| 80 | int zero_freq_rem;
|
---|
| 81 | int coded_depth;
|
---|
| 82 |
|
---|
| 83 | int total_nodes;
|
---|
| 84 | int total_blocks;
|
---|
| 85 |
|
---|
| 86 | fgk_bit *coded_bits;
|
---|
| 87 |
|
---|
| 88 | fgk_block *block_array;
|
---|
| 89 | fgk_block *free_block;
|
---|
| 90 |
|
---|
| 91 | fgk_node *decode_ptr;
|
---|
| 92 | fgk_node *remaining_zeros;
|
---|
| 93 | fgk_node *alphabet;
|
---|
| 94 | fgk_node *root_node;
|
---|
| 95 | fgk_node *free_node;
|
---|
| 96 | };
|
---|
| 97 |
|
---|
| 98 | /*********************************************************************/
|
---|
| 99 | /* Encoder */
|
---|
| 100 | /*********************************************************************/
|
---|
| 101 |
|
---|
| 102 | static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size */);
|
---|
| 103 | static void fgk_init (fgk_stream *h);
|
---|
| 104 | static int fgk_encode_data (fgk_stream *h,
|
---|
| 105 | int n);
|
---|
| 106 | static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h);
|
---|
| 107 |
|
---|
| 108 | static int xd3_encode_fgk (xd3_stream *stream,
|
---|
| 109 | fgk_stream *sec_stream,
|
---|
| 110 | xd3_output *input,
|
---|
| 111 | xd3_output *output,
|
---|
| 112 | xd3_sec_cfg *cfg);
|
---|
| 113 |
|
---|
| 114 | /*********************************************************************/
|
---|
| 115 | /* Decoder */
|
---|
| 116 | /*********************************************************************/
|
---|
| 117 |
|
---|
| 118 | static INLINE int fgk_decode_bit (fgk_stream *h,
|
---|
| 119 | fgk_bit b);
|
---|
| 120 | static int fgk_decode_data (fgk_stream *h);
|
---|
| 121 | static void fgk_destroy (xd3_stream *stream,
|
---|
| 122 | fgk_stream *h);
|
---|
| 123 |
|
---|
| 124 | static int xd3_decode_fgk (xd3_stream *stream,
|
---|
| 125 | fgk_stream *sec_stream,
|
---|
| 126 | const uint8_t **input,
|
---|
| 127 | const uint8_t *const input_end,
|
---|
| 128 | uint8_t **output,
|
---|
| 129 | const uint8_t *const output_end);
|
---|
| 130 |
|
---|
| 131 | /*********************************************************************/
|
---|
| 132 | /* Private */
|
---|
| 133 | /*********************************************************************/
|
---|
| 134 |
|
---|
| 135 | static unsigned int fgk_find_nth_zero (fgk_stream *h, int n);
|
---|
| 136 | static int fgk_nth_zero (fgk_stream *h, int n);
|
---|
| 137 | static void fgk_update_tree (fgk_stream *h, int n);
|
---|
| 138 | static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n);
|
---|
| 139 | static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node);
|
---|
| 140 | static void fgk_move_right (fgk_stream *h, fgk_node *node);
|
---|
| 141 | static void fgk_promote (fgk_stream *h, fgk_node *node);
|
---|
| 142 | static void fgk_init_node (fgk_node *node, int i, int size);
|
---|
| 143 | static fgk_block* fgk_make_block (fgk_stream *h, fgk_node *l);
|
---|
| 144 | static void fgk_free_block (fgk_stream *h, fgk_block *b);
|
---|
| 145 | static void fgk_factor_remaining (fgk_stream *h);
|
---|
| 146 | static INLINE void fgk_swap_ptrs (fgk_node **one, fgk_node **two);
|
---|
| 147 |
|
---|
| 148 | /*********************************************************************/
|
---|
| 149 | /* Basic Routines */
|
---|
| 150 | /*********************************************************************/
|
---|
| 151 |
|
---|
| 152 | /* returns an initialized huffman encoder for an alphabet with the
|
---|
| 153 | * given size. returns NULL if enough memory cannot be allocated */
|
---|
| 154 | static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size0 */)
|
---|
| 155 | {
|
---|
| 156 | int alphabet_size0 = ALPHABET_SIZE;
|
---|
| 157 | fgk_stream *h;
|
---|
| 158 |
|
---|
| 159 | if ((h = (fgk_stream*) xd3_alloc (stream, 1, sizeof (fgk_stream))) == NULL)
|
---|
| 160 | {
|
---|
| 161 | return NULL;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | h->total_nodes = (2 * alphabet_size0) - 1;
|
---|
| 165 | h->total_blocks = (2 * h->total_nodes);
|
---|
| 166 | h->alphabet = (fgk_node*) xd3_alloc (stream, h->total_nodes, sizeof (fgk_node));
|
---|
| 167 | h->block_array = (fgk_block*) xd3_alloc (stream, h->total_blocks, sizeof (fgk_block));
|
---|
| 168 | h->coded_bits = (fgk_bit*) xd3_alloc (stream, alphabet_size0, sizeof (fgk_bit));
|
---|
| 169 |
|
---|
| 170 | if (h->coded_bits == NULL ||
|
---|
| 171 | h->alphabet == NULL ||
|
---|
| 172 | h->block_array == NULL)
|
---|
| 173 | {
|
---|
| 174 | fgk_destroy (stream, h);
|
---|
| 175 | return NULL;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | h->alphabet_size = alphabet_size0;
|
---|
| 179 |
|
---|
| 180 | return h;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | static void fgk_init (fgk_stream *h)
|
---|
| 184 | {
|
---|
| 185 | int i;
|
---|
| 186 |
|
---|
| 187 | h->root_node = h->alphabet;
|
---|
| 188 | h->decode_ptr = h->root_node;
|
---|
| 189 | h->free_node = h->alphabet + h->alphabet_size;
|
---|
| 190 | h->remaining_zeros = h->alphabet;
|
---|
| 191 | h->coded_depth = 0;
|
---|
| 192 | h->zero_freq_count = h->alphabet_size + 2;
|
---|
| 193 |
|
---|
| 194 | /* after two calls to factor_remaining, zero_freq_count == alphabet_size */
|
---|
| 195 | fgk_factor_remaining(h); /* set ZFE and ZFR */
|
---|
| 196 | fgk_factor_remaining(h); /* set ZFDB according to prev state */
|
---|
| 197 |
|
---|
| 198 | IF_DEBUG (memset (h->alphabet, 0, sizeof (h->alphabet[0]) * h->total_nodes));
|
---|
| 199 |
|
---|
| 200 | for (i = 0; i < h->total_blocks-1; i += 1)
|
---|
| 201 | {
|
---|
| 202 | h->block_array[i].block_freeptr = &h->block_array[i + 1];
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | h->block_array[h->total_blocks - 1].block_freeptr = NULL;
|
---|
| 206 | h->free_block = h->block_array;
|
---|
| 207 |
|
---|
| 208 | /* Zero frequency nodes are inserted in the first alphabet_size
|
---|
| 209 | * positions, with Value, weight, and a pointer to the next zero
|
---|
| 210 | * frequency node. */
|
---|
| 211 | for (i = h->alphabet_size - 1; i >= 0; i -= 1)
|
---|
| 212 | {
|
---|
| 213 | fgk_init_node (h->alphabet + i, i, h->alphabet_size);
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | static void fgk_swap_ptrs(fgk_node **one, fgk_node **two)
|
---|
| 218 | {
|
---|
| 219 | fgk_node *tmp = *one;
|
---|
| 220 | *one = *two;
|
---|
| 221 | *two = tmp;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | /* Takes huffman transmitter h and n, the nth elt in the alphabet, and
|
---|
| 225 | * returns the number of required to encode n. */
|
---|
| 226 | static int fgk_encode_data (fgk_stream* h, int n)
|
---|
| 227 | {
|
---|
| 228 | fgk_node *target_ptr = h->alphabet + n;
|
---|
| 229 |
|
---|
| 230 | XD3_ASSERT (n < h->alphabet_size);
|
---|
| 231 |
|
---|
| 232 | h->coded_depth = 0;
|
---|
| 233 |
|
---|
| 234 | /* First encode the binary representation of the nth remaining
|
---|
| 235 | * zero frequency element in reverse such that bit, which will be
|
---|
| 236 | * encoded from h->coded_depth down to 0 will arrive in increasing
|
---|
| 237 | * order following the tree path. If there is only one left, it
|
---|
| 238 | * is not neccesary to encode these bits. */
|
---|
| 239 | if (IS_ADAPTIVE && target_ptr->weight == 0)
|
---|
| 240 | {
|
---|
| 241 | unsigned int where, shift;
|
---|
| 242 | int bits;
|
---|
| 243 |
|
---|
| 244 | where = fgk_find_nth_zero(h, n);
|
---|
| 245 | shift = 1;
|
---|
| 246 |
|
---|
| 247 | if (h->zero_freq_rem == 0)
|
---|
| 248 | {
|
---|
| 249 | bits = h->zero_freq_exp;
|
---|
| 250 | }
|
---|
| 251 | else
|
---|
| 252 | {
|
---|
| 253 | bits = h->zero_freq_exp + 1;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | while (bits > 0)
|
---|
| 257 | {
|
---|
| 258 | h->coded_bits[h->coded_depth++] = (shift & where) && 1;
|
---|
| 259 |
|
---|
| 260 | bits -= 1;
|
---|
| 261 | shift <<= 1;
|
---|
| 262 | };
|
---|
| 263 |
|
---|
| 264 | target_ptr = h->remaining_zeros;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | /* The path from root to node is filled into coded_bits in reverse so
|
---|
| 268 | * that it is encoded in the right order */
|
---|
| 269 | while (target_ptr != h->root_node)
|
---|
| 270 | {
|
---|
| 271 | h->coded_bits[h->coded_depth++] = (target_ptr->parent->right_child == target_ptr);
|
---|
| 272 |
|
---|
| 273 | target_ptr = target_ptr->parent;
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 | if (IS_ADAPTIVE)
|
---|
| 277 | {
|
---|
| 278 | fgk_update_tree(h, n);
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | return h->coded_depth;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | /* Should be called as many times as fgk_encode_data returns.
|
---|
| 285 | */
|
---|
| 286 | static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h)
|
---|
| 287 | {
|
---|
| 288 | XD3_ASSERT (h->coded_depth > 0);
|
---|
| 289 |
|
---|
| 290 | return h->coded_bits[--h->coded_depth];
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | /* This procedure updates the tree after alphabet[n] has been encoded
|
---|
| 294 | * or decoded.
|
---|
| 295 | */
|
---|
| 296 | static void fgk_update_tree (fgk_stream *h, int n)
|
---|
| 297 | {
|
---|
| 298 | fgk_node *incr_node;
|
---|
| 299 |
|
---|
| 300 | if (h->alphabet[n].weight == 0)
|
---|
| 301 | {
|
---|
| 302 | incr_node = fgk_increase_zero_weight (h, n);
|
---|
| 303 | }
|
---|
| 304 | else
|
---|
| 305 | {
|
---|
| 306 | incr_node = h->alphabet + n;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | while (incr_node != h->root_node)
|
---|
| 310 | {
|
---|
| 311 | fgk_move_right (h, incr_node);
|
---|
| 312 | fgk_promote (h, incr_node);
|
---|
| 313 | incr_node->weight += 1; /* incr the parent */
|
---|
| 314 | incr_node = incr_node->parent; /* repeat */
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | h->root_node->weight += 1;
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | static void fgk_move_right (fgk_stream *h, fgk_node *move_fwd)
|
---|
| 321 | {
|
---|
| 322 | fgk_node **fwd_par_ptr, **back_par_ptr;
|
---|
| 323 | fgk_node *move_back, *tmp;
|
---|
| 324 |
|
---|
| 325 | move_back = move_fwd->my_block->block_leader;
|
---|
| 326 |
|
---|
| 327 | if (move_fwd == move_back ||
|
---|
| 328 | move_fwd->parent == move_back ||
|
---|
| 329 | move_fwd->weight == 0)
|
---|
| 330 | {
|
---|
| 331 | return;
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | move_back->right->left = move_fwd;
|
---|
| 335 |
|
---|
| 336 | if (move_fwd->left)
|
---|
| 337 | {
|
---|
| 338 | move_fwd->left->right = move_back;
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | tmp = move_fwd->right;
|
---|
| 342 | move_fwd->right = move_back->right;
|
---|
| 343 |
|
---|
| 344 | if (tmp == move_back)
|
---|
| 345 | {
|
---|
| 346 | move_back->right = move_fwd;
|
---|
| 347 | }
|
---|
| 348 | else
|
---|
| 349 | {
|
---|
| 350 | tmp->left = move_back;
|
---|
| 351 | move_back->right = tmp;
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | tmp = move_back->left;
|
---|
| 355 | move_back->left = move_fwd->left;
|
---|
| 356 |
|
---|
| 357 | if (tmp == move_fwd)
|
---|
| 358 | {
|
---|
| 359 | move_fwd->left = move_back;
|
---|
| 360 | }
|
---|
| 361 | else
|
---|
| 362 | {
|
---|
| 363 | tmp->right = move_fwd;
|
---|
| 364 | move_fwd->left = tmp;
|
---|
| 365 | }
|
---|
| 366 |
|
---|
| 367 | if (move_fwd->parent->right_child == move_fwd)
|
---|
| 368 | {
|
---|
| 369 | fwd_par_ptr = &move_fwd->parent->right_child;
|
---|
| 370 | }
|
---|
| 371 | else
|
---|
| 372 | {
|
---|
| 373 | fwd_par_ptr = &move_fwd->parent->left_child;
|
---|
| 374 | }
|
---|
| 375 |
|
---|
| 376 | if (move_back->parent->right_child == move_back)
|
---|
| 377 | {
|
---|
| 378 | back_par_ptr = &move_back->parent->right_child;
|
---|
| 379 | }
|
---|
| 380 | else
|
---|
| 381 | {
|
---|
| 382 | back_par_ptr = &move_back->parent->left_child;
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | fgk_swap_ptrs (&move_fwd->parent, &move_back->parent);
|
---|
| 386 | fgk_swap_ptrs (fwd_par_ptr, back_par_ptr);
|
---|
| 387 |
|
---|
| 388 | move_fwd->my_block->block_leader = move_fwd;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | /* Shifts node, the leader of its block, into the next block. */
|
---|
| 392 | static void fgk_promote (fgk_stream *h, fgk_node *node)
|
---|
| 393 | {
|
---|
| 394 | fgk_node *my_left, *my_right;
|
---|
| 395 | fgk_block *cur_block;
|
---|
| 396 |
|
---|
| 397 | my_right = node->right;
|
---|
| 398 | my_left = node->left;
|
---|
| 399 | cur_block = node->my_block;
|
---|
| 400 |
|
---|
| 401 | if (node->weight == 0)
|
---|
| 402 | {
|
---|
| 403 | return;
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 | /* if left is right child, parent of remaining zeros case (?), means parent
|
---|
| 407 | * has same weight as right child. */
|
---|
| 408 | if (my_left == node->right_child &&
|
---|
| 409 | node->left_child &&
|
---|
| 410 | node->left_child->weight == 0)
|
---|
| 411 | {
|
---|
| 412 | XD3_ASSERT (node->left_child == h->remaining_zeros);
|
---|
| 413 | XD3_ASSERT (node->right_child->weight == (node->weight+1)); /* child weight was already incremented */
|
---|
| 414 |
|
---|
| 415 | if (node->weight == (my_right->weight - 1) && my_right != h->root_node)
|
---|
| 416 | {
|
---|
| 417 | fgk_free_block (h, cur_block);
|
---|
| 418 | node->my_block = my_right->my_block;
|
---|
| 419 | my_left->my_block = my_right->my_block;
|
---|
| 420 | }
|
---|
| 421 |
|
---|
| 422 | return;
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | if (my_left == h->remaining_zeros)
|
---|
| 426 | {
|
---|
| 427 | return;
|
---|
| 428 | }
|
---|
| 429 |
|
---|
| 430 | /* true if not the leftmost node */
|
---|
| 431 | if (my_left->my_block == cur_block)
|
---|
| 432 | {
|
---|
| 433 | my_left->my_block->block_leader = my_left;
|
---|
| 434 | }
|
---|
| 435 | else
|
---|
| 436 | {
|
---|
| 437 | fgk_free_block (h, cur_block);
|
---|
| 438 | }
|
---|
| 439 |
|
---|
| 440 | /* node->parent != my_right */
|
---|
| 441 | if ((node->weight == (my_right->weight - 1)) && (my_right != h->root_node))
|
---|
| 442 | {
|
---|
| 443 | node->my_block = my_right->my_block;
|
---|
| 444 | }
|
---|
| 445 | else
|
---|
| 446 | {
|
---|
| 447 | node->my_block = fgk_make_block (h, node);
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | /* When an element is seen the first time this is called to remove it from the list of
|
---|
| 452 | * zero weight elements and introduce a new internal node to the tree. */
|
---|
| 453 | static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n)
|
---|
| 454 | {
|
---|
| 455 | fgk_node *this_zero, *new_internal, *zero_ptr;
|
---|
| 456 |
|
---|
| 457 | this_zero = h->alphabet + n;
|
---|
| 458 |
|
---|
| 459 | if (h->zero_freq_count == 1)
|
---|
| 460 | {
|
---|
| 461 | /* this is the last one */
|
---|
| 462 | this_zero->right_child = NULL;
|
---|
| 463 |
|
---|
| 464 | if (this_zero->right->weight == 1)
|
---|
| 465 | {
|
---|
| 466 | this_zero->my_block = this_zero->right->my_block;
|
---|
| 467 | }
|
---|
| 468 | else
|
---|
| 469 | {
|
---|
| 470 | this_zero->my_block = fgk_make_block (h, this_zero);
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | h->remaining_zeros = NULL;
|
---|
| 474 |
|
---|
| 475 | return this_zero;
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 | zero_ptr = h->remaining_zeros;
|
---|
| 479 |
|
---|
| 480 | new_internal = h->free_node++;
|
---|
| 481 |
|
---|
| 482 | new_internal->parent = zero_ptr->parent;
|
---|
| 483 | new_internal->right = zero_ptr->right;
|
---|
| 484 | new_internal->weight = 0;
|
---|
| 485 | new_internal->right_child = this_zero;
|
---|
| 486 | new_internal->left = this_zero;
|
---|
| 487 |
|
---|
| 488 | if (h->remaining_zeros == h->root_node)
|
---|
| 489 | {
|
---|
| 490 | /* This is the first element to be coded */
|
---|
| 491 | h->root_node = new_internal;
|
---|
| 492 | this_zero->my_block = fgk_make_block (h, this_zero);
|
---|
| 493 | new_internal->my_block = fgk_make_block (h, new_internal);
|
---|
| 494 | }
|
---|
| 495 | else
|
---|
| 496 | {
|
---|
| 497 | new_internal->right->left = new_internal;
|
---|
| 498 |
|
---|
| 499 | if (zero_ptr->parent->right_child == zero_ptr)
|
---|
| 500 | {
|
---|
| 501 | zero_ptr->parent->right_child = new_internal;
|
---|
| 502 | }
|
---|
| 503 | else
|
---|
| 504 | {
|
---|
| 505 | zero_ptr->parent->left_child = new_internal;
|
---|
| 506 | }
|
---|
| 507 |
|
---|
| 508 | if (new_internal->right->weight == 1)
|
---|
| 509 | {
|
---|
| 510 | new_internal->my_block = new_internal->right->my_block;
|
---|
| 511 | }
|
---|
| 512 | else
|
---|
| 513 | {
|
---|
| 514 | new_internal->my_block = fgk_make_block (h, new_internal);
|
---|
| 515 | }
|
---|
| 516 |
|
---|
| 517 | this_zero->my_block = new_internal->my_block;
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | fgk_eliminate_zero (h, this_zero);
|
---|
| 521 |
|
---|
| 522 | new_internal->left_child = h->remaining_zeros;
|
---|
| 523 |
|
---|
| 524 | this_zero->right = new_internal;
|
---|
| 525 | this_zero->left = h->remaining_zeros;
|
---|
| 526 | this_zero->parent = new_internal;
|
---|
| 527 | this_zero->left_child = NULL;
|
---|
| 528 | this_zero->right_child = NULL;
|
---|
| 529 |
|
---|
| 530 | h->remaining_zeros->parent = new_internal;
|
---|
| 531 | h->remaining_zeros->right = this_zero;
|
---|
| 532 |
|
---|
| 533 | return this_zero;
|
---|
| 534 | }
|
---|
| 535 |
|
---|
| 536 | /* When a zero frequency element is encoded, it is followed by the binary representation
|
---|
| 537 | * of the index into the remaining elements. Sets a cache to the element before it so
|
---|
| 538 | * that it can be removed without calling this procedure again. */
|
---|
| 539 | static unsigned int fgk_find_nth_zero (fgk_stream* h, int n)
|
---|
| 540 | {
|
---|
| 541 | fgk_node *target_ptr = h->alphabet + n;
|
---|
| 542 | fgk_node *head_ptr = h->remaining_zeros;
|
---|
| 543 | unsigned int idx = 0;
|
---|
| 544 |
|
---|
| 545 | while (target_ptr != head_ptr)
|
---|
| 546 | {
|
---|
| 547 | head_ptr = head_ptr->right_child;
|
---|
| 548 | idx += 1;
|
---|
| 549 | }
|
---|
| 550 |
|
---|
| 551 | return idx;
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | /* Splices node out of the list of zeros. */
|
---|
| 555 | static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node)
|
---|
| 556 | {
|
---|
| 557 | if (h->zero_freq_count == 1)
|
---|
| 558 | {
|
---|
| 559 | return;
|
---|
| 560 | }
|
---|
| 561 |
|
---|
| 562 | fgk_factor_remaining(h);
|
---|
| 563 |
|
---|
| 564 | if (node->left_child == NULL)
|
---|
| 565 | {
|
---|
| 566 | h->remaining_zeros = h->remaining_zeros->right_child;
|
---|
| 567 | h->remaining_zeros->left_child = NULL;
|
---|
| 568 | }
|
---|
| 569 | else if (node->right_child == NULL)
|
---|
| 570 | {
|
---|
| 571 | node->left_child->right_child = NULL;
|
---|
| 572 | }
|
---|
| 573 | else
|
---|
| 574 | {
|
---|
| 575 | node->right_child->left_child = node->left_child;
|
---|
| 576 | node->left_child->right_child = node->right_child;
|
---|
| 577 | }
|
---|
| 578 | }
|
---|
| 579 |
|
---|
| 580 | static void fgk_init_node (fgk_node *node, int i, int size)
|
---|
| 581 | {
|
---|
| 582 | if (i < size - 1)
|
---|
| 583 | {
|
---|
| 584 | node->right_child = node + 1;
|
---|
| 585 | }
|
---|
| 586 | else
|
---|
| 587 | {
|
---|
| 588 | node->right_child = NULL;
|
---|
| 589 | }
|
---|
| 590 |
|
---|
| 591 | if (i >= 1)
|
---|
| 592 | {
|
---|
| 593 | node->left_child = node - 1;
|
---|
| 594 | }
|
---|
| 595 | else
|
---|
| 596 | {
|
---|
| 597 | node->left_child = NULL;
|
---|
| 598 | }
|
---|
| 599 |
|
---|
| 600 | node->weight = 0;
|
---|
| 601 | node->parent = NULL;
|
---|
| 602 | node->right = NULL;
|
---|
| 603 | node->left = NULL;
|
---|
| 604 | node->my_block = NULL;
|
---|
| 605 | }
|
---|
| 606 |
|
---|
| 607 | /* The data structure used is an array of blocks, which are unions of free pointers and
|
---|
| 608 | * huffnode pointers. free blocks are a linked list of free blocks, the front of which is
|
---|
| 609 | * h->free_block. The used blocks are pointers to the head of each block. */
|
---|
| 610 | static fgk_block* fgk_make_block (fgk_stream *h, fgk_node* lead)
|
---|
| 611 | {
|
---|
| 612 | fgk_block *ret = h->free_block;
|
---|
| 613 |
|
---|
| 614 | XD3_ASSERT (h->free_block != NULL);
|
---|
| 615 |
|
---|
| 616 | h->free_block = h->free_block->block_freeptr;
|
---|
| 617 |
|
---|
| 618 | ret->block_leader = lead;
|
---|
| 619 |
|
---|
| 620 | return ret;
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 | /* Restores the block to the front of the free list. */
|
---|
| 624 | static void fgk_free_block (fgk_stream *h, fgk_block *b)
|
---|
| 625 | {
|
---|
| 626 | b->block_freeptr = h->free_block;
|
---|
| 627 | h->free_block = b;
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 | /* sets zero_freq_count, zero_freq_rem, and zero_freq_exp to satsity the equation given
|
---|
| 631 | * above. */
|
---|
| 632 | static void fgk_factor_remaining (fgk_stream *h)
|
---|
| 633 | {
|
---|
| 634 | unsigned int i;
|
---|
| 635 |
|
---|
| 636 | i = (--h->zero_freq_count);
|
---|
| 637 | h->zero_freq_exp = 0;
|
---|
| 638 |
|
---|
| 639 | while (i > 1)
|
---|
| 640 | {
|
---|
| 641 | h->zero_freq_exp += 1;
|
---|
| 642 | i >>= 1;
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | i = 1 << h->zero_freq_exp;
|
---|
| 646 |
|
---|
| 647 | h->zero_freq_rem = h->zero_freq_count - i;
|
---|
| 648 | }
|
---|
| 649 |
|
---|
| 650 | /* receives a bit at a time and returns true when a complete code has
|
---|
| 651 | * been received.
|
---|
| 652 | */
|
---|
| 653 | static int INLINE fgk_decode_bit (fgk_stream* h, fgk_bit b)
|
---|
| 654 | {
|
---|
| 655 | XD3_ASSERT (b == 1 || b == 0);
|
---|
| 656 |
|
---|
| 657 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0)
|
---|
| 658 | {
|
---|
| 659 | int bitsreq;
|
---|
| 660 |
|
---|
| 661 | if (h->zero_freq_rem == 0)
|
---|
| 662 | {
|
---|
| 663 | bitsreq = h->zero_freq_exp;
|
---|
| 664 | }
|
---|
| 665 | else
|
---|
| 666 | {
|
---|
| 667 | bitsreq = h->zero_freq_exp + 1;
|
---|
| 668 | }
|
---|
| 669 |
|
---|
| 670 | h->coded_bits[h->coded_depth] = b;
|
---|
| 671 | h->coded_depth += 1;
|
---|
| 672 |
|
---|
| 673 | return h->coded_depth >= bitsreq;
|
---|
| 674 | }
|
---|
| 675 | else
|
---|
| 676 | {
|
---|
| 677 | if (b)
|
---|
| 678 | {
|
---|
| 679 | h->decode_ptr = h->decode_ptr->right_child;
|
---|
| 680 | }
|
---|
| 681 | else
|
---|
| 682 | {
|
---|
| 683 | h->decode_ptr = h->decode_ptr->left_child;
|
---|
| 684 | }
|
---|
| 685 |
|
---|
| 686 | if (h->decode_ptr->left_child == NULL)
|
---|
| 687 | {
|
---|
| 688 | /* If the weight is non-zero, finished. */
|
---|
| 689 | if (h->decode_ptr->weight != 0)
|
---|
| 690 | {
|
---|
| 691 | return 1;
|
---|
| 692 | }
|
---|
| 693 |
|
---|
| 694 | /* zero_freq_count is dropping to 0, finished. */
|
---|
| 695 | return h->zero_freq_count == 1;
|
---|
| 696 | }
|
---|
| 697 | else
|
---|
| 698 | {
|
---|
| 699 | return 0;
|
---|
| 700 | }
|
---|
| 701 | }
|
---|
| 702 | }
|
---|
| 703 |
|
---|
| 704 | static int fgk_nth_zero (fgk_stream* h, int n)
|
---|
| 705 | {
|
---|
| 706 | fgk_node *ret = h->remaining_zeros;
|
---|
| 707 |
|
---|
| 708 | /* ERROR: if during this loop (ret->right_child == NULL) then the encoder's zero count
|
---|
| 709 | * is too high. Could return an error code now, but is probably unnecessary overhead,
|
---|
| 710 | * since the caller should check integrity anyway. */
|
---|
| 711 | for (; n != 0 && ret->right_child != NULL; n -= 1)
|
---|
| 712 | {
|
---|
| 713 | ret = ret->right_child;
|
---|
| 714 | }
|
---|
| 715 |
|
---|
| 716 | return ret - h->alphabet;
|
---|
| 717 | }
|
---|
| 718 |
|
---|
| 719 | /* once fgk_decode_bit returns 1, this retrieves an index into the
|
---|
| 720 | * alphabet otherwise this returns 0, indicating more bits are
|
---|
| 721 | * required.
|
---|
| 722 | */
|
---|
| 723 | static int fgk_decode_data (fgk_stream* h)
|
---|
| 724 | {
|
---|
| 725 | unsigned int elt = h->decode_ptr - h->alphabet;
|
---|
| 726 |
|
---|
| 727 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0) {
|
---|
| 728 | int i;
|
---|
| 729 | unsigned int n = 0;
|
---|
| 730 |
|
---|
| 731 | for (i = 0; i < h->coded_depth - 1; i += 1)
|
---|
| 732 | {
|
---|
| 733 | n |= h->coded_bits[i];
|
---|
| 734 | n <<= 1;
|
---|
| 735 | }
|
---|
| 736 |
|
---|
| 737 | n |= h->coded_bits[i];
|
---|
| 738 | elt = fgk_nth_zero(h, n);
|
---|
| 739 | }
|
---|
| 740 |
|
---|
| 741 | h->coded_depth = 0;
|
---|
| 742 |
|
---|
| 743 | if (IS_ADAPTIVE)
|
---|
| 744 | {
|
---|
| 745 | fgk_update_tree(h, elt);
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | h->decode_ptr = h->root_node;
|
---|
| 749 |
|
---|
| 750 | return elt;
|
---|
| 751 | }
|
---|
| 752 |
|
---|
| 753 | static void fgk_destroy (xd3_stream *stream,
|
---|
| 754 | fgk_stream *h)
|
---|
| 755 | {
|
---|
| 756 | if (h != NULL)
|
---|
| 757 | {
|
---|
| 758 | xd3_free (stream, h->alphabet);
|
---|
| 759 | xd3_free (stream, h->coded_bits);
|
---|
| 760 | xd3_free (stream, h->block_array);
|
---|
| 761 | xd3_free (stream, h);
|
---|
| 762 | }
|
---|
| 763 | }
|
---|
| 764 |
|
---|
| 765 | /*********************************************************************/
|
---|
| 766 | /* Xdelta */
|
---|
| 767 | /*********************************************************************/
|
---|
| 768 |
|
---|
| 769 | static int
|
---|
| 770 | xd3_encode_fgk (xd3_stream *stream, fgk_stream *sec_stream, xd3_output *input, xd3_output *output, xd3_sec_cfg *cfg)
|
---|
| 771 | {
|
---|
| 772 | bit_state bstate = BIT_STATE_ENCODE_INIT;
|
---|
| 773 | xd3_output *cur_page;
|
---|
| 774 | int ret;
|
---|
| 775 |
|
---|
| 776 | /* OPT: quit compression early if it looks bad */
|
---|
| 777 | for (cur_page = input; cur_page; cur_page = cur_page->next_page)
|
---|
| 778 | {
|
---|
| 779 | const uint8_t *inp = cur_page->base;
|
---|
| 780 | const uint8_t *inp_max = inp + cur_page->next;
|
---|
| 781 |
|
---|
| 782 | while (inp < inp_max)
|
---|
| 783 | {
|
---|
| 784 | usize_t bits = fgk_encode_data (sec_stream, *inp++);
|
---|
| 785 |
|
---|
| 786 | while (bits--)
|
---|
| 787 | {
|
---|
| 788 | if ((ret = xd3_encode_bit (stream, & output, & bstate, fgk_get_encoded_bit (sec_stream)))) { return ret; }
|
---|
| 789 | }
|
---|
| 790 | }
|
---|
| 791 | }
|
---|
| 792 |
|
---|
| 793 | return xd3_flush_bits (stream, & output, & bstate);
|
---|
| 794 | }
|
---|
| 795 |
|
---|
| 796 | static int
|
---|
| 797 | xd3_decode_fgk (xd3_stream *stream,
|
---|
| 798 | fgk_stream *sec_stream,
|
---|
| 799 | const uint8_t **input_pos,
|
---|
| 800 | const uint8_t *const input_max,
|
---|
| 801 | uint8_t **output_pos,
|
---|
| 802 | const uint8_t *const output_max)
|
---|
| 803 | {
|
---|
| 804 | bit_state bstate;
|
---|
| 805 | uint8_t *output = *output_pos;
|
---|
| 806 | const uint8_t *input = *input_pos;
|
---|
| 807 |
|
---|
| 808 | for (;;)
|
---|
| 809 | {
|
---|
| 810 | if (input == input_max)
|
---|
| 811 | {
|
---|
| 812 | stream->msg = "secondary decoder end of input";
|
---|
| 813 | return XD3_INTERNAL;
|
---|
| 814 | }
|
---|
| 815 |
|
---|
| 816 | bstate.cur_byte = *input++;
|
---|
| 817 |
|
---|
| 818 | for (bstate.cur_mask = 1; bstate.cur_mask != 0x100; bstate.cur_mask <<= 1)
|
---|
| 819 | {
|
---|
| 820 | int done = fgk_decode_bit (sec_stream, (bstate.cur_byte & bstate.cur_mask) && 1);
|
---|
| 821 |
|
---|
| 822 | if (! done) { continue; }
|
---|
| 823 |
|
---|
| 824 | *output++ = fgk_decode_data (sec_stream);
|
---|
| 825 |
|
---|
| 826 | if (unlikely (output == output_max))
|
---|
| 827 | {
|
---|
| 828 | /* During regression testing: */
|
---|
| 829 | IF_REGRESSION ({
|
---|
| 830 | int ret;
|
---|
| 831 | bstate.cur_mask <<= 1;
|
---|
| 832 | if ((ret = xd3_test_clean_bits (stream, & bstate))) { return ret; }
|
---|
| 833 | });
|
---|
| 834 |
|
---|
| 835 | (*output_pos) = output;
|
---|
| 836 | (*input_pos) = input;
|
---|
| 837 | return 0;
|
---|
| 838 | }
|
---|
| 839 | }
|
---|
| 840 | }
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 | #endif /* _XDELTA3_FGK_ */
|
---|