1 | /* xdelta 3 - delta compression tools and library
|
---|
2 | * Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald
|
---|
3 | *
|
---|
4 | * This program is free software; you can redistribute it and/or modify
|
---|
5 | * it under the terms of the GNU General Public License as published by
|
---|
6 | * the Free Software Foundation; either version 2 of the License, or
|
---|
7 | * (at your option) any later version.
|
---|
8 | *
|
---|
9 | * This program is distributed in the hope that it will be useful,
|
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
12 | * GNU General Public License for more details.
|
---|
13 | *
|
---|
14 | * You should have received a copy of the GNU General Public License
|
---|
15 | * along with this program; if not, write to the Free Software
|
---|
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
17 | */
|
---|
18 |
|
---|
19 | /* For demonstration purposes only.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #ifndef _XDELTA3_FGK_h_
|
---|
23 | #define _XDELTA3_FGK_h_
|
---|
24 |
|
---|
25 | /* An implementation of the FGK algorithm described by D.E. Knuth in "Dynamic Huffman
|
---|
26 | * Coding" in Journal of Algorithms 6. */
|
---|
27 |
|
---|
28 | /* A 32bit counter (fgk_weight) is used as the frequency counter for nodes in the huffman
|
---|
29 | * tree. @!@ Need to test for overflow and/or reset stats. */
|
---|
30 |
|
---|
31 | typedef struct _fgk_stream fgk_stream;
|
---|
32 | typedef struct _fgk_node fgk_node;
|
---|
33 | typedef struct _fgk_block fgk_block;
|
---|
34 | typedef unsigned int fgk_bit;
|
---|
35 | typedef uint32_t fgk_weight;
|
---|
36 |
|
---|
37 | struct _fgk_block {
|
---|
38 | union {
|
---|
39 | fgk_node *un_leader;
|
---|
40 | fgk_block *un_freeptr;
|
---|
41 | } un;
|
---|
42 | };
|
---|
43 |
|
---|
44 | #define block_leader un.un_leader
|
---|
45 | #define block_freeptr un.un_freeptr
|
---|
46 |
|
---|
47 | /* The code can also support fixed huffman encoding/decoding. */
|
---|
48 | #define IS_ADAPTIVE 1
|
---|
49 |
|
---|
50 | /* weight is a count of the number of times this element has been seen in the current
|
---|
51 | * encoding/decoding. parent, right_child, and left_child are pointers defining the tree
|
---|
52 | * structure. right and left point to neighbors in an ordered sequence of
|
---|
53 | * weights. The left child of a node is always guaranteed to have weight not greater than
|
---|
54 | * its sibling. fgk_blockLeader points to the element with the same weight as itself which is
|
---|
55 | * closest to the next increasing weight block. */
|
---|
56 | struct _fgk_node
|
---|
57 | {
|
---|
58 | fgk_weight weight;
|
---|
59 | fgk_node *parent;
|
---|
60 | fgk_node *left_child;
|
---|
61 | fgk_node *right_child;
|
---|
62 | fgk_node *left;
|
---|
63 | fgk_node *right;
|
---|
64 | fgk_block *my_block;
|
---|
65 | };
|
---|
66 |
|
---|
67 | /* alphabet_size is the a count of the number of possible leaves in the huffman tree. The
|
---|
68 | * number of total nodes counting internal nodes is ((2 * alphabet_size) - 1).
|
---|
69 | * zero_freq_count is the number of elements remaining which have zero frequency.
|
---|
70 | * zero_freq_exp and zero_freq_rem satisfy the equation zero_freq_count = 2^zero_freq_exp +
|
---|
71 | * zero_freq_rem. root_node is the root of the tree, which is initialized to a node with
|
---|
72 | * zero frequency and contains the 0th such element. free_node contains a pointer to the
|
---|
73 | * next available fgk_node space. alphabet contains all the elements and is indexed by N.
|
---|
74 | * remaining_zeros points to the head of the list of zeros. */
|
---|
75 | struct _fgk_stream
|
---|
76 | {
|
---|
77 | int alphabet_size;
|
---|
78 | int zero_freq_count;
|
---|
79 | int zero_freq_exp;
|
---|
80 | int zero_freq_rem;
|
---|
81 | int coded_depth;
|
---|
82 |
|
---|
83 | int total_nodes;
|
---|
84 | int total_blocks;
|
---|
85 |
|
---|
86 | fgk_bit *coded_bits;
|
---|
87 |
|
---|
88 | fgk_block *block_array;
|
---|
89 | fgk_block *free_block;
|
---|
90 |
|
---|
91 | fgk_node *decode_ptr;
|
---|
92 | fgk_node *remaining_zeros;
|
---|
93 | fgk_node *alphabet;
|
---|
94 | fgk_node *root_node;
|
---|
95 | fgk_node *free_node;
|
---|
96 | };
|
---|
97 |
|
---|
98 | /*********************************************************************/
|
---|
99 | /* Encoder */
|
---|
100 | /*********************************************************************/
|
---|
101 |
|
---|
102 | static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size */);
|
---|
103 | static void fgk_init (fgk_stream *h);
|
---|
104 | static int fgk_encode_data (fgk_stream *h,
|
---|
105 | int n);
|
---|
106 | static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h);
|
---|
107 |
|
---|
108 | static int xd3_encode_fgk (xd3_stream *stream,
|
---|
109 | fgk_stream *sec_stream,
|
---|
110 | xd3_output *input,
|
---|
111 | xd3_output *output,
|
---|
112 | xd3_sec_cfg *cfg);
|
---|
113 |
|
---|
114 | /*********************************************************************/
|
---|
115 | /* Decoder */
|
---|
116 | /*********************************************************************/
|
---|
117 |
|
---|
118 | static INLINE int fgk_decode_bit (fgk_stream *h,
|
---|
119 | fgk_bit b);
|
---|
120 | static int fgk_decode_data (fgk_stream *h);
|
---|
121 | static void fgk_destroy (xd3_stream *stream,
|
---|
122 | fgk_stream *h);
|
---|
123 |
|
---|
124 | static int xd3_decode_fgk (xd3_stream *stream,
|
---|
125 | fgk_stream *sec_stream,
|
---|
126 | const uint8_t **input,
|
---|
127 | const uint8_t *const input_end,
|
---|
128 | uint8_t **output,
|
---|
129 | const uint8_t *const output_end);
|
---|
130 |
|
---|
131 | /*********************************************************************/
|
---|
132 | /* Private */
|
---|
133 | /*********************************************************************/
|
---|
134 |
|
---|
135 | static unsigned int fgk_find_nth_zero (fgk_stream *h, int n);
|
---|
136 | static int fgk_nth_zero (fgk_stream *h, int n);
|
---|
137 | static void fgk_update_tree (fgk_stream *h, int n);
|
---|
138 | static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n);
|
---|
139 | static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node);
|
---|
140 | static void fgk_move_right (fgk_stream *h, fgk_node *node);
|
---|
141 | static void fgk_promote (fgk_stream *h, fgk_node *node);
|
---|
142 | static void fgk_init_node (fgk_node *node, int i, int size);
|
---|
143 | static fgk_block* fgk_make_block (fgk_stream *h, fgk_node *l);
|
---|
144 | static void fgk_free_block (fgk_stream *h, fgk_block *b);
|
---|
145 | static void fgk_factor_remaining (fgk_stream *h);
|
---|
146 | static INLINE void fgk_swap_ptrs (fgk_node **one, fgk_node **two);
|
---|
147 |
|
---|
148 | /*********************************************************************/
|
---|
149 | /* Basic Routines */
|
---|
150 | /*********************************************************************/
|
---|
151 |
|
---|
152 | /* returns an initialized huffman encoder for an alphabet with the
|
---|
153 | * given size. returns NULL if enough memory cannot be allocated */
|
---|
154 | static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size0 */)
|
---|
155 | {
|
---|
156 | int alphabet_size0 = ALPHABET_SIZE;
|
---|
157 | fgk_stream *h;
|
---|
158 |
|
---|
159 | if ((h = (fgk_stream*) xd3_alloc (stream, 1, sizeof (fgk_stream))) == NULL)
|
---|
160 | {
|
---|
161 | return NULL;
|
---|
162 | }
|
---|
163 |
|
---|
164 | h->total_nodes = (2 * alphabet_size0) - 1;
|
---|
165 | h->total_blocks = (2 * h->total_nodes);
|
---|
166 | h->alphabet = (fgk_node*) xd3_alloc (stream, h->total_nodes, sizeof (fgk_node));
|
---|
167 | h->block_array = (fgk_block*) xd3_alloc (stream, h->total_blocks, sizeof (fgk_block));
|
---|
168 | h->coded_bits = (fgk_bit*) xd3_alloc (stream, alphabet_size0, sizeof (fgk_bit));
|
---|
169 |
|
---|
170 | if (h->coded_bits == NULL ||
|
---|
171 | h->alphabet == NULL ||
|
---|
172 | h->block_array == NULL)
|
---|
173 | {
|
---|
174 | fgk_destroy (stream, h);
|
---|
175 | return NULL;
|
---|
176 | }
|
---|
177 |
|
---|
178 | h->alphabet_size = alphabet_size0;
|
---|
179 |
|
---|
180 | return h;
|
---|
181 | }
|
---|
182 |
|
---|
183 | static void fgk_init (fgk_stream *h)
|
---|
184 | {
|
---|
185 | int i;
|
---|
186 |
|
---|
187 | h->root_node = h->alphabet;
|
---|
188 | h->decode_ptr = h->root_node;
|
---|
189 | h->free_node = h->alphabet + h->alphabet_size;
|
---|
190 | h->remaining_zeros = h->alphabet;
|
---|
191 | h->coded_depth = 0;
|
---|
192 | h->zero_freq_count = h->alphabet_size + 2;
|
---|
193 |
|
---|
194 | /* after two calls to factor_remaining, zero_freq_count == alphabet_size */
|
---|
195 | fgk_factor_remaining(h); /* set ZFE and ZFR */
|
---|
196 | fgk_factor_remaining(h); /* set ZFDB according to prev state */
|
---|
197 |
|
---|
198 | IF_DEBUG (memset (h->alphabet, 0, sizeof (h->alphabet[0]) * h->total_nodes));
|
---|
199 |
|
---|
200 | for (i = 0; i < h->total_blocks-1; i += 1)
|
---|
201 | {
|
---|
202 | h->block_array[i].block_freeptr = &h->block_array[i + 1];
|
---|
203 | }
|
---|
204 |
|
---|
205 | h->block_array[h->total_blocks - 1].block_freeptr = NULL;
|
---|
206 | h->free_block = h->block_array;
|
---|
207 |
|
---|
208 | /* Zero frequency nodes are inserted in the first alphabet_size
|
---|
209 | * positions, with Value, weight, and a pointer to the next zero
|
---|
210 | * frequency node. */
|
---|
211 | for (i = h->alphabet_size - 1; i >= 0; i -= 1)
|
---|
212 | {
|
---|
213 | fgk_init_node (h->alphabet + i, i, h->alphabet_size);
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | static void fgk_swap_ptrs(fgk_node **one, fgk_node **two)
|
---|
218 | {
|
---|
219 | fgk_node *tmp = *one;
|
---|
220 | *one = *two;
|
---|
221 | *two = tmp;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /* Takes huffman transmitter h and n, the nth elt in the alphabet, and
|
---|
225 | * returns the number of required to encode n. */
|
---|
226 | static int fgk_encode_data (fgk_stream* h, int n)
|
---|
227 | {
|
---|
228 | fgk_node *target_ptr = h->alphabet + n;
|
---|
229 |
|
---|
230 | XD3_ASSERT (n < h->alphabet_size);
|
---|
231 |
|
---|
232 | h->coded_depth = 0;
|
---|
233 |
|
---|
234 | /* First encode the binary representation of the nth remaining
|
---|
235 | * zero frequency element in reverse such that bit, which will be
|
---|
236 | * encoded from h->coded_depth down to 0 will arrive in increasing
|
---|
237 | * order following the tree path. If there is only one left, it
|
---|
238 | * is not neccesary to encode these bits. */
|
---|
239 | if (IS_ADAPTIVE && target_ptr->weight == 0)
|
---|
240 | {
|
---|
241 | unsigned int where, shift;
|
---|
242 | int bits;
|
---|
243 |
|
---|
244 | where = fgk_find_nth_zero(h, n);
|
---|
245 | shift = 1;
|
---|
246 |
|
---|
247 | if (h->zero_freq_rem == 0)
|
---|
248 | {
|
---|
249 | bits = h->zero_freq_exp;
|
---|
250 | }
|
---|
251 | else
|
---|
252 | {
|
---|
253 | bits = h->zero_freq_exp + 1;
|
---|
254 | }
|
---|
255 |
|
---|
256 | while (bits > 0)
|
---|
257 | {
|
---|
258 | h->coded_bits[h->coded_depth++] = (shift & where) && 1;
|
---|
259 |
|
---|
260 | bits -= 1;
|
---|
261 | shift <<= 1;
|
---|
262 | };
|
---|
263 |
|
---|
264 | target_ptr = h->remaining_zeros;
|
---|
265 | }
|
---|
266 |
|
---|
267 | /* The path from root to node is filled into coded_bits in reverse so
|
---|
268 | * that it is encoded in the right order */
|
---|
269 | while (target_ptr != h->root_node)
|
---|
270 | {
|
---|
271 | h->coded_bits[h->coded_depth++] = (target_ptr->parent->right_child == target_ptr);
|
---|
272 |
|
---|
273 | target_ptr = target_ptr->parent;
|
---|
274 | }
|
---|
275 |
|
---|
276 | if (IS_ADAPTIVE)
|
---|
277 | {
|
---|
278 | fgk_update_tree(h, n);
|
---|
279 | }
|
---|
280 |
|
---|
281 | return h->coded_depth;
|
---|
282 | }
|
---|
283 |
|
---|
284 | /* Should be called as many times as fgk_encode_data returns.
|
---|
285 | */
|
---|
286 | static INLINE fgk_bit fgk_get_encoded_bit (fgk_stream *h)
|
---|
287 | {
|
---|
288 | XD3_ASSERT (h->coded_depth > 0);
|
---|
289 |
|
---|
290 | return h->coded_bits[--h->coded_depth];
|
---|
291 | }
|
---|
292 |
|
---|
293 | /* This procedure updates the tree after alphabet[n] has been encoded
|
---|
294 | * or decoded.
|
---|
295 | */
|
---|
296 | static void fgk_update_tree (fgk_stream *h, int n)
|
---|
297 | {
|
---|
298 | fgk_node *incr_node;
|
---|
299 |
|
---|
300 | if (h->alphabet[n].weight == 0)
|
---|
301 | {
|
---|
302 | incr_node = fgk_increase_zero_weight (h, n);
|
---|
303 | }
|
---|
304 | else
|
---|
305 | {
|
---|
306 | incr_node = h->alphabet + n;
|
---|
307 | }
|
---|
308 |
|
---|
309 | while (incr_node != h->root_node)
|
---|
310 | {
|
---|
311 | fgk_move_right (h, incr_node);
|
---|
312 | fgk_promote (h, incr_node);
|
---|
313 | incr_node->weight += 1; /* incr the parent */
|
---|
314 | incr_node = incr_node->parent; /* repeat */
|
---|
315 | }
|
---|
316 |
|
---|
317 | h->root_node->weight += 1;
|
---|
318 | }
|
---|
319 |
|
---|
320 | static void fgk_move_right (fgk_stream *h, fgk_node *move_fwd)
|
---|
321 | {
|
---|
322 | fgk_node **fwd_par_ptr, **back_par_ptr;
|
---|
323 | fgk_node *move_back, *tmp;
|
---|
324 |
|
---|
325 | move_back = move_fwd->my_block->block_leader;
|
---|
326 |
|
---|
327 | if (move_fwd == move_back ||
|
---|
328 | move_fwd->parent == move_back ||
|
---|
329 | move_fwd->weight == 0)
|
---|
330 | {
|
---|
331 | return;
|
---|
332 | }
|
---|
333 |
|
---|
334 | move_back->right->left = move_fwd;
|
---|
335 |
|
---|
336 | if (move_fwd->left)
|
---|
337 | {
|
---|
338 | move_fwd->left->right = move_back;
|
---|
339 | }
|
---|
340 |
|
---|
341 | tmp = move_fwd->right;
|
---|
342 | move_fwd->right = move_back->right;
|
---|
343 |
|
---|
344 | if (tmp == move_back)
|
---|
345 | {
|
---|
346 | move_back->right = move_fwd;
|
---|
347 | }
|
---|
348 | else
|
---|
349 | {
|
---|
350 | tmp->left = move_back;
|
---|
351 | move_back->right = tmp;
|
---|
352 | }
|
---|
353 |
|
---|
354 | tmp = move_back->left;
|
---|
355 | move_back->left = move_fwd->left;
|
---|
356 |
|
---|
357 | if (tmp == move_fwd)
|
---|
358 | {
|
---|
359 | move_fwd->left = move_back;
|
---|
360 | }
|
---|
361 | else
|
---|
362 | {
|
---|
363 | tmp->right = move_fwd;
|
---|
364 | move_fwd->left = tmp;
|
---|
365 | }
|
---|
366 |
|
---|
367 | if (move_fwd->parent->right_child == move_fwd)
|
---|
368 | {
|
---|
369 | fwd_par_ptr = &move_fwd->parent->right_child;
|
---|
370 | }
|
---|
371 | else
|
---|
372 | {
|
---|
373 | fwd_par_ptr = &move_fwd->parent->left_child;
|
---|
374 | }
|
---|
375 |
|
---|
376 | if (move_back->parent->right_child == move_back)
|
---|
377 | {
|
---|
378 | back_par_ptr = &move_back->parent->right_child;
|
---|
379 | }
|
---|
380 | else
|
---|
381 | {
|
---|
382 | back_par_ptr = &move_back->parent->left_child;
|
---|
383 | }
|
---|
384 |
|
---|
385 | fgk_swap_ptrs (&move_fwd->parent, &move_back->parent);
|
---|
386 | fgk_swap_ptrs (fwd_par_ptr, back_par_ptr);
|
---|
387 |
|
---|
388 | move_fwd->my_block->block_leader = move_fwd;
|
---|
389 | }
|
---|
390 |
|
---|
391 | /* Shifts node, the leader of its block, into the next block. */
|
---|
392 | static void fgk_promote (fgk_stream *h, fgk_node *node)
|
---|
393 | {
|
---|
394 | fgk_node *my_left, *my_right;
|
---|
395 | fgk_block *cur_block;
|
---|
396 |
|
---|
397 | my_right = node->right;
|
---|
398 | my_left = node->left;
|
---|
399 | cur_block = node->my_block;
|
---|
400 |
|
---|
401 | if (node->weight == 0)
|
---|
402 | {
|
---|
403 | return;
|
---|
404 | }
|
---|
405 |
|
---|
406 | /* if left is right child, parent of remaining zeros case (?), means parent
|
---|
407 | * has same weight as right child. */
|
---|
408 | if (my_left == node->right_child &&
|
---|
409 | node->left_child &&
|
---|
410 | node->left_child->weight == 0)
|
---|
411 | {
|
---|
412 | XD3_ASSERT (node->left_child == h->remaining_zeros);
|
---|
413 | XD3_ASSERT (node->right_child->weight == (node->weight+1)); /* child weight was already incremented */
|
---|
414 |
|
---|
415 | if (node->weight == (my_right->weight - 1) && my_right != h->root_node)
|
---|
416 | {
|
---|
417 | fgk_free_block (h, cur_block);
|
---|
418 | node->my_block = my_right->my_block;
|
---|
419 | my_left->my_block = my_right->my_block;
|
---|
420 | }
|
---|
421 |
|
---|
422 | return;
|
---|
423 | }
|
---|
424 |
|
---|
425 | if (my_left == h->remaining_zeros)
|
---|
426 | {
|
---|
427 | return;
|
---|
428 | }
|
---|
429 |
|
---|
430 | /* true if not the leftmost node */
|
---|
431 | if (my_left->my_block == cur_block)
|
---|
432 | {
|
---|
433 | my_left->my_block->block_leader = my_left;
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 | fgk_free_block (h, cur_block);
|
---|
438 | }
|
---|
439 |
|
---|
440 | /* node->parent != my_right */
|
---|
441 | if ((node->weight == (my_right->weight - 1)) && (my_right != h->root_node))
|
---|
442 | {
|
---|
443 | node->my_block = my_right->my_block;
|
---|
444 | }
|
---|
445 | else
|
---|
446 | {
|
---|
447 | node->my_block = fgk_make_block (h, node);
|
---|
448 | }
|
---|
449 | }
|
---|
450 |
|
---|
451 | /* When an element is seen the first time this is called to remove it from the list of
|
---|
452 | * zero weight elements and introduce a new internal node to the tree. */
|
---|
453 | static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n)
|
---|
454 | {
|
---|
455 | fgk_node *this_zero, *new_internal, *zero_ptr;
|
---|
456 |
|
---|
457 | this_zero = h->alphabet + n;
|
---|
458 |
|
---|
459 | if (h->zero_freq_count == 1)
|
---|
460 | {
|
---|
461 | /* this is the last one */
|
---|
462 | this_zero->right_child = NULL;
|
---|
463 |
|
---|
464 | if (this_zero->right->weight == 1)
|
---|
465 | {
|
---|
466 | this_zero->my_block = this_zero->right->my_block;
|
---|
467 | }
|
---|
468 | else
|
---|
469 | {
|
---|
470 | this_zero->my_block = fgk_make_block (h, this_zero);
|
---|
471 | }
|
---|
472 |
|
---|
473 | h->remaining_zeros = NULL;
|
---|
474 |
|
---|
475 | return this_zero;
|
---|
476 | }
|
---|
477 |
|
---|
478 | zero_ptr = h->remaining_zeros;
|
---|
479 |
|
---|
480 | new_internal = h->free_node++;
|
---|
481 |
|
---|
482 | new_internal->parent = zero_ptr->parent;
|
---|
483 | new_internal->right = zero_ptr->right;
|
---|
484 | new_internal->weight = 0;
|
---|
485 | new_internal->right_child = this_zero;
|
---|
486 | new_internal->left = this_zero;
|
---|
487 |
|
---|
488 | if (h->remaining_zeros == h->root_node)
|
---|
489 | {
|
---|
490 | /* This is the first element to be coded */
|
---|
491 | h->root_node = new_internal;
|
---|
492 | this_zero->my_block = fgk_make_block (h, this_zero);
|
---|
493 | new_internal->my_block = fgk_make_block (h, new_internal);
|
---|
494 | }
|
---|
495 | else
|
---|
496 | {
|
---|
497 | new_internal->right->left = new_internal;
|
---|
498 |
|
---|
499 | if (zero_ptr->parent->right_child == zero_ptr)
|
---|
500 | {
|
---|
501 | zero_ptr->parent->right_child = new_internal;
|
---|
502 | }
|
---|
503 | else
|
---|
504 | {
|
---|
505 | zero_ptr->parent->left_child = new_internal;
|
---|
506 | }
|
---|
507 |
|
---|
508 | if (new_internal->right->weight == 1)
|
---|
509 | {
|
---|
510 | new_internal->my_block = new_internal->right->my_block;
|
---|
511 | }
|
---|
512 | else
|
---|
513 | {
|
---|
514 | new_internal->my_block = fgk_make_block (h, new_internal);
|
---|
515 | }
|
---|
516 |
|
---|
517 | this_zero->my_block = new_internal->my_block;
|
---|
518 | }
|
---|
519 |
|
---|
520 | fgk_eliminate_zero (h, this_zero);
|
---|
521 |
|
---|
522 | new_internal->left_child = h->remaining_zeros;
|
---|
523 |
|
---|
524 | this_zero->right = new_internal;
|
---|
525 | this_zero->left = h->remaining_zeros;
|
---|
526 | this_zero->parent = new_internal;
|
---|
527 | this_zero->left_child = NULL;
|
---|
528 | this_zero->right_child = NULL;
|
---|
529 |
|
---|
530 | h->remaining_zeros->parent = new_internal;
|
---|
531 | h->remaining_zeros->right = this_zero;
|
---|
532 |
|
---|
533 | return this_zero;
|
---|
534 | }
|
---|
535 |
|
---|
536 | /* When a zero frequency element is encoded, it is followed by the binary representation
|
---|
537 | * of the index into the remaining elements. Sets a cache to the element before it so
|
---|
538 | * that it can be removed without calling this procedure again. */
|
---|
539 | static unsigned int fgk_find_nth_zero (fgk_stream* h, int n)
|
---|
540 | {
|
---|
541 | fgk_node *target_ptr = h->alphabet + n;
|
---|
542 | fgk_node *head_ptr = h->remaining_zeros;
|
---|
543 | unsigned int idx = 0;
|
---|
544 |
|
---|
545 | while (target_ptr != head_ptr)
|
---|
546 | {
|
---|
547 | head_ptr = head_ptr->right_child;
|
---|
548 | idx += 1;
|
---|
549 | }
|
---|
550 |
|
---|
551 | return idx;
|
---|
552 | }
|
---|
553 |
|
---|
554 | /* Splices node out of the list of zeros. */
|
---|
555 | static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node)
|
---|
556 | {
|
---|
557 | if (h->zero_freq_count == 1)
|
---|
558 | {
|
---|
559 | return;
|
---|
560 | }
|
---|
561 |
|
---|
562 | fgk_factor_remaining(h);
|
---|
563 |
|
---|
564 | if (node->left_child == NULL)
|
---|
565 | {
|
---|
566 | h->remaining_zeros = h->remaining_zeros->right_child;
|
---|
567 | h->remaining_zeros->left_child = NULL;
|
---|
568 | }
|
---|
569 | else if (node->right_child == NULL)
|
---|
570 | {
|
---|
571 | node->left_child->right_child = NULL;
|
---|
572 | }
|
---|
573 | else
|
---|
574 | {
|
---|
575 | node->right_child->left_child = node->left_child;
|
---|
576 | node->left_child->right_child = node->right_child;
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 | static void fgk_init_node (fgk_node *node, int i, int size)
|
---|
581 | {
|
---|
582 | if (i < size - 1)
|
---|
583 | {
|
---|
584 | node->right_child = node + 1;
|
---|
585 | }
|
---|
586 | else
|
---|
587 | {
|
---|
588 | node->right_child = NULL;
|
---|
589 | }
|
---|
590 |
|
---|
591 | if (i >= 1)
|
---|
592 | {
|
---|
593 | node->left_child = node - 1;
|
---|
594 | }
|
---|
595 | else
|
---|
596 | {
|
---|
597 | node->left_child = NULL;
|
---|
598 | }
|
---|
599 |
|
---|
600 | node->weight = 0;
|
---|
601 | node->parent = NULL;
|
---|
602 | node->right = NULL;
|
---|
603 | node->left = NULL;
|
---|
604 | node->my_block = NULL;
|
---|
605 | }
|
---|
606 |
|
---|
607 | /* The data structure used is an array of blocks, which are unions of free pointers and
|
---|
608 | * huffnode pointers. free blocks are a linked list of free blocks, the front of which is
|
---|
609 | * h->free_block. The used blocks are pointers to the head of each block. */
|
---|
610 | static fgk_block* fgk_make_block (fgk_stream *h, fgk_node* lead)
|
---|
611 | {
|
---|
612 | fgk_block *ret = h->free_block;
|
---|
613 |
|
---|
614 | XD3_ASSERT (h->free_block != NULL);
|
---|
615 |
|
---|
616 | h->free_block = h->free_block->block_freeptr;
|
---|
617 |
|
---|
618 | ret->block_leader = lead;
|
---|
619 |
|
---|
620 | return ret;
|
---|
621 | }
|
---|
622 |
|
---|
623 | /* Restores the block to the front of the free list. */
|
---|
624 | static void fgk_free_block (fgk_stream *h, fgk_block *b)
|
---|
625 | {
|
---|
626 | b->block_freeptr = h->free_block;
|
---|
627 | h->free_block = b;
|
---|
628 | }
|
---|
629 |
|
---|
630 | /* sets zero_freq_count, zero_freq_rem, and zero_freq_exp to satsity the equation given
|
---|
631 | * above. */
|
---|
632 | static void fgk_factor_remaining (fgk_stream *h)
|
---|
633 | {
|
---|
634 | unsigned int i;
|
---|
635 |
|
---|
636 | i = (--h->zero_freq_count);
|
---|
637 | h->zero_freq_exp = 0;
|
---|
638 |
|
---|
639 | while (i > 1)
|
---|
640 | {
|
---|
641 | h->zero_freq_exp += 1;
|
---|
642 | i >>= 1;
|
---|
643 | }
|
---|
644 |
|
---|
645 | i = 1 << h->zero_freq_exp;
|
---|
646 |
|
---|
647 | h->zero_freq_rem = h->zero_freq_count - i;
|
---|
648 | }
|
---|
649 |
|
---|
650 | /* receives a bit at a time and returns true when a complete code has
|
---|
651 | * been received.
|
---|
652 | */
|
---|
653 | static int INLINE fgk_decode_bit (fgk_stream* h, fgk_bit b)
|
---|
654 | {
|
---|
655 | XD3_ASSERT (b == 1 || b == 0);
|
---|
656 |
|
---|
657 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0)
|
---|
658 | {
|
---|
659 | int bitsreq;
|
---|
660 |
|
---|
661 | if (h->zero_freq_rem == 0)
|
---|
662 | {
|
---|
663 | bitsreq = h->zero_freq_exp;
|
---|
664 | }
|
---|
665 | else
|
---|
666 | {
|
---|
667 | bitsreq = h->zero_freq_exp + 1;
|
---|
668 | }
|
---|
669 |
|
---|
670 | h->coded_bits[h->coded_depth] = b;
|
---|
671 | h->coded_depth += 1;
|
---|
672 |
|
---|
673 | return h->coded_depth >= bitsreq;
|
---|
674 | }
|
---|
675 | else
|
---|
676 | {
|
---|
677 | if (b)
|
---|
678 | {
|
---|
679 | h->decode_ptr = h->decode_ptr->right_child;
|
---|
680 | }
|
---|
681 | else
|
---|
682 | {
|
---|
683 | h->decode_ptr = h->decode_ptr->left_child;
|
---|
684 | }
|
---|
685 |
|
---|
686 | if (h->decode_ptr->left_child == NULL)
|
---|
687 | {
|
---|
688 | /* If the weight is non-zero, finished. */
|
---|
689 | if (h->decode_ptr->weight != 0)
|
---|
690 | {
|
---|
691 | return 1;
|
---|
692 | }
|
---|
693 |
|
---|
694 | /* zero_freq_count is dropping to 0, finished. */
|
---|
695 | return h->zero_freq_count == 1;
|
---|
696 | }
|
---|
697 | else
|
---|
698 | {
|
---|
699 | return 0;
|
---|
700 | }
|
---|
701 | }
|
---|
702 | }
|
---|
703 |
|
---|
704 | static int fgk_nth_zero (fgk_stream* h, int n)
|
---|
705 | {
|
---|
706 | fgk_node *ret = h->remaining_zeros;
|
---|
707 |
|
---|
708 | /* ERROR: if during this loop (ret->right_child == NULL) then the encoder's zero count
|
---|
709 | * is too high. Could return an error code now, but is probably unnecessary overhead,
|
---|
710 | * since the caller should check integrity anyway. */
|
---|
711 | for (; n != 0 && ret->right_child != NULL; n -= 1)
|
---|
712 | {
|
---|
713 | ret = ret->right_child;
|
---|
714 | }
|
---|
715 |
|
---|
716 | return ret - h->alphabet;
|
---|
717 | }
|
---|
718 |
|
---|
719 | /* once fgk_decode_bit returns 1, this retrieves an index into the
|
---|
720 | * alphabet otherwise this returns 0, indicating more bits are
|
---|
721 | * required.
|
---|
722 | */
|
---|
723 | static int fgk_decode_data (fgk_stream* h)
|
---|
724 | {
|
---|
725 | unsigned int elt = h->decode_ptr - h->alphabet;
|
---|
726 |
|
---|
727 | if (IS_ADAPTIVE && h->decode_ptr->weight == 0) {
|
---|
728 | int i;
|
---|
729 | unsigned int n = 0;
|
---|
730 |
|
---|
731 | for (i = 0; i < h->coded_depth - 1; i += 1)
|
---|
732 | {
|
---|
733 | n |= h->coded_bits[i];
|
---|
734 | n <<= 1;
|
---|
735 | }
|
---|
736 |
|
---|
737 | n |= h->coded_bits[i];
|
---|
738 | elt = fgk_nth_zero(h, n);
|
---|
739 | }
|
---|
740 |
|
---|
741 | h->coded_depth = 0;
|
---|
742 |
|
---|
743 | if (IS_ADAPTIVE)
|
---|
744 | {
|
---|
745 | fgk_update_tree(h, elt);
|
---|
746 | }
|
---|
747 |
|
---|
748 | h->decode_ptr = h->root_node;
|
---|
749 |
|
---|
750 | return elt;
|
---|
751 | }
|
---|
752 |
|
---|
753 | static void fgk_destroy (xd3_stream *stream,
|
---|
754 | fgk_stream *h)
|
---|
755 | {
|
---|
756 | if (h != NULL)
|
---|
757 | {
|
---|
758 | xd3_free (stream, h->alphabet);
|
---|
759 | xd3_free (stream, h->coded_bits);
|
---|
760 | xd3_free (stream, h->block_array);
|
---|
761 | xd3_free (stream, h);
|
---|
762 | }
|
---|
763 | }
|
---|
764 |
|
---|
765 | /*********************************************************************/
|
---|
766 | /* Xdelta */
|
---|
767 | /*********************************************************************/
|
---|
768 |
|
---|
769 | static int
|
---|
770 | xd3_encode_fgk (xd3_stream *stream, fgk_stream *sec_stream, xd3_output *input, xd3_output *output, xd3_sec_cfg *cfg)
|
---|
771 | {
|
---|
772 | bit_state bstate = BIT_STATE_ENCODE_INIT;
|
---|
773 | xd3_output *cur_page;
|
---|
774 | int ret;
|
---|
775 |
|
---|
776 | /* OPT: quit compression early if it looks bad */
|
---|
777 | for (cur_page = input; cur_page; cur_page = cur_page->next_page)
|
---|
778 | {
|
---|
779 | const uint8_t *inp = cur_page->base;
|
---|
780 | const uint8_t *inp_max = inp + cur_page->next;
|
---|
781 |
|
---|
782 | while (inp < inp_max)
|
---|
783 | {
|
---|
784 | usize_t bits = fgk_encode_data (sec_stream, *inp++);
|
---|
785 |
|
---|
786 | while (bits--)
|
---|
787 | {
|
---|
788 | if ((ret = xd3_encode_bit (stream, & output, & bstate, fgk_get_encoded_bit (sec_stream)))) { return ret; }
|
---|
789 | }
|
---|
790 | }
|
---|
791 | }
|
---|
792 |
|
---|
793 | return xd3_flush_bits (stream, & output, & bstate);
|
---|
794 | }
|
---|
795 |
|
---|
796 | static int
|
---|
797 | xd3_decode_fgk (xd3_stream *stream,
|
---|
798 | fgk_stream *sec_stream,
|
---|
799 | const uint8_t **input_pos,
|
---|
800 | const uint8_t *const input_max,
|
---|
801 | uint8_t **output_pos,
|
---|
802 | const uint8_t *const output_max)
|
---|
803 | {
|
---|
804 | bit_state bstate;
|
---|
805 | uint8_t *output = *output_pos;
|
---|
806 | const uint8_t *input = *input_pos;
|
---|
807 |
|
---|
808 | for (;;)
|
---|
809 | {
|
---|
810 | if (input == input_max)
|
---|
811 | {
|
---|
812 | stream->msg = "secondary decoder end of input";
|
---|
813 | return XD3_INTERNAL;
|
---|
814 | }
|
---|
815 |
|
---|
816 | bstate.cur_byte = *input++;
|
---|
817 |
|
---|
818 | for (bstate.cur_mask = 1; bstate.cur_mask != 0x100; bstate.cur_mask <<= 1)
|
---|
819 | {
|
---|
820 | int done = fgk_decode_bit (sec_stream, (bstate.cur_byte & bstate.cur_mask) && 1);
|
---|
821 |
|
---|
822 | if (! done) { continue; }
|
---|
823 |
|
---|
824 | *output++ = fgk_decode_data (sec_stream);
|
---|
825 |
|
---|
826 | if (unlikely (output == output_max))
|
---|
827 | {
|
---|
828 | /* During regression testing: */
|
---|
829 | IF_REGRESSION ({
|
---|
830 | int ret;
|
---|
831 | bstate.cur_mask <<= 1;
|
---|
832 | if ((ret = xd3_test_clean_bits (stream, & bstate))) { return ret; }
|
---|
833 | });
|
---|
834 |
|
---|
835 | (*output_pos) = output;
|
---|
836 | (*input_pos) = input;
|
---|
837 | return 0;
|
---|
838 | }
|
---|
839 | }
|
---|
840 | }
|
---|
841 | }
|
---|
842 |
|
---|
843 | #endif /* _XDELTA3_FGK_ */
|
---|