1 | /* adler32.c -- compute the Adler-32 checksum of a data stream
|
---|
2 | * Copyright (C) 1995-2011 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | */
|
---|
5 |
|
---|
6 | /* @(#) $Id$ */
|
---|
7 |
|
---|
8 | #include "zutil.h"
|
---|
9 |
|
---|
10 | #define local static
|
---|
11 |
|
---|
12 | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
|
---|
13 |
|
---|
14 | #define BASE 65521 /* largest prime smaller than 65536 */
|
---|
15 | #define NMAX 5552
|
---|
16 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
---|
17 |
|
---|
18 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
---|
19 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
---|
20 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
---|
21 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
---|
22 | #define DO16(buf) DO8(buf,0); DO8(buf,8);
|
---|
23 |
|
---|
24 | /* use NO_DIVIDE if your processor does not do division in hardware --
|
---|
25 | try it both ways to see which is faster */
|
---|
26 | #ifdef NO_DIVIDE
|
---|
27 | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
|
---|
28 | (thank you to John Reiser for pointing this out) */
|
---|
29 | # define CHOP(a) \
|
---|
30 | do { \
|
---|
31 | unsigned long tmp = a >> 16; \
|
---|
32 | a &= 0xffffUL; \
|
---|
33 | a += (tmp << 4) - tmp; \
|
---|
34 | } while (0)
|
---|
35 | # define MOD28(a) \
|
---|
36 | do { \
|
---|
37 | CHOP(a); \
|
---|
38 | if (a >= BASE) a -= BASE; \
|
---|
39 | } while (0)
|
---|
40 | # define MOD(a) \
|
---|
41 | do { \
|
---|
42 | CHOP(a); \
|
---|
43 | MOD28(a); \
|
---|
44 | } while (0)
|
---|
45 | # define MOD63(a) \
|
---|
46 | do { /* this assumes a is not negative */ \
|
---|
47 | z_off64_t tmp = a >> 32; \
|
---|
48 | a &= 0xffffffffL; \
|
---|
49 | a += (tmp << 8) - (tmp << 5) + tmp; \
|
---|
50 | tmp = a >> 16; \
|
---|
51 | a &= 0xffffL; \
|
---|
52 | a += (tmp << 4) - tmp; \
|
---|
53 | tmp = a >> 16; \
|
---|
54 | a &= 0xffffL; \
|
---|
55 | a += (tmp << 4) - tmp; \
|
---|
56 | if (a >= BASE) a -= BASE; \
|
---|
57 | } while (0)
|
---|
58 | #else
|
---|
59 | # define MOD(a) a %= BASE
|
---|
60 | # define MOD28(a) a %= BASE
|
---|
61 | # define MOD63(a) a %= BASE
|
---|
62 | #endif
|
---|
63 |
|
---|
64 | /* ========================================================================= */
|
---|
65 | uLong ZEXPORT adler32(adler, buf, len)
|
---|
66 | uLong adler;
|
---|
67 | const Bytef *buf;
|
---|
68 | uInt len;
|
---|
69 | {
|
---|
70 | unsigned long sum2;
|
---|
71 | unsigned n;
|
---|
72 |
|
---|
73 | /* split Adler-32 into component sums */
|
---|
74 | sum2 = (adler >> 16) & 0xffff;
|
---|
75 | adler &= 0xffff;
|
---|
76 |
|
---|
77 | /* in case user likes doing a byte at a time, keep it fast */
|
---|
78 | if (len == 1) {
|
---|
79 | adler += buf[0];
|
---|
80 | if (adler >= BASE)
|
---|
81 | adler -= BASE;
|
---|
82 | sum2 += adler;
|
---|
83 | if (sum2 >= BASE)
|
---|
84 | sum2 -= BASE;
|
---|
85 | return adler | (sum2 << 16);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /* initial Adler-32 value (deferred check for len == 1 speed) */
|
---|
89 | if (buf == Z_NULL)
|
---|
90 | return 1L;
|
---|
91 |
|
---|
92 | /* in case short lengths are provided, keep it somewhat fast */
|
---|
93 | if (len < 16) {
|
---|
94 | while (len--) {
|
---|
95 | adler += *buf++;
|
---|
96 | sum2 += adler;
|
---|
97 | }
|
---|
98 | if (adler >= BASE)
|
---|
99 | adler -= BASE;
|
---|
100 | MOD28(sum2); /* only added so many BASE's */
|
---|
101 | return adler | (sum2 << 16);
|
---|
102 | }
|
---|
103 |
|
---|
104 | /* do length NMAX blocks -- requires just one modulo operation */
|
---|
105 | while (len >= NMAX) {
|
---|
106 | len -= NMAX;
|
---|
107 | n = NMAX / 16; /* NMAX is divisible by 16 */
|
---|
108 | do {
|
---|
109 | DO16(buf); /* 16 sums unrolled */
|
---|
110 | buf += 16;
|
---|
111 | } while (--n);
|
---|
112 | MOD(adler);
|
---|
113 | MOD(sum2);
|
---|
114 | }
|
---|
115 |
|
---|
116 | /* do remaining bytes (less than NMAX, still just one modulo) */
|
---|
117 | if (len) { /* avoid modulos if none remaining */
|
---|
118 | while (len >= 16) {
|
---|
119 | len -= 16;
|
---|
120 | DO16(buf);
|
---|
121 | buf += 16;
|
---|
122 | }
|
---|
123 | while (len--) {
|
---|
124 | adler += *buf++;
|
---|
125 | sum2 += adler;
|
---|
126 | }
|
---|
127 | MOD(adler);
|
---|
128 | MOD(sum2);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* return recombined sums */
|
---|
132 | return adler | (sum2 << 16);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /* ========================================================================= */
|
---|
136 | local uLong adler32_combine_(adler1, adler2, len2)
|
---|
137 | uLong adler1;
|
---|
138 | uLong adler2;
|
---|
139 | z_off64_t len2;
|
---|
140 | {
|
---|
141 | unsigned long sum1;
|
---|
142 | unsigned long sum2;
|
---|
143 | unsigned rem;
|
---|
144 |
|
---|
145 | /* for negative len, return invalid adler32 as a clue for debugging */
|
---|
146 | if (len2 < 0)
|
---|
147 | return 0xffffffffUL;
|
---|
148 |
|
---|
149 | /* the derivation of this formula is left as an exercise for the reader */
|
---|
150 | MOD63(len2); /* assumes len2 >= 0 */
|
---|
151 | rem = (unsigned)len2;
|
---|
152 | sum1 = adler1 & 0xffff;
|
---|
153 | sum2 = rem * sum1;
|
---|
154 | MOD(sum2);
|
---|
155 | sum1 += (adler2 & 0xffff) + BASE - 1;
|
---|
156 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
---|
157 | if (sum1 >= BASE) sum1 -= BASE;
|
---|
158 | if (sum1 >= BASE) sum1 -= BASE;
|
---|
159 | if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
|
---|
160 | if (sum2 >= BASE) sum2 -= BASE;
|
---|
161 | return sum1 | (sum2 << 16);
|
---|
162 | }
|
---|
163 |
|
---|
164 | /* ========================================================================= */
|
---|
165 | uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
---|
166 | uLong adler1;
|
---|
167 | uLong adler2;
|
---|
168 | z_off_t len2;
|
---|
169 | {
|
---|
170 | return adler32_combine_(adler1, adler2, len2);
|
---|
171 | }
|
---|
172 |
|
---|
173 | uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
|
---|
174 | uLong adler1;
|
---|
175 | uLong adler2;
|
---|
176 | z_off64_t len2;
|
---|
177 | {
|
---|
178 | return adler32_combine_(adler1, adler2, len2);
|
---|
179 | }
|
---|