1 | /* blast.c
|
---|
2 | * Copyright (C) 2003, 2012 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in blast.h
|
---|
4 | * version 1.2, 24 Oct 2012
|
---|
5 | *
|
---|
6 | * blast.c decompresses data compressed by the PKWare Compression Library.
|
---|
7 | * This function provides functionality similar to the explode() function of
|
---|
8 | * the PKWare library, hence the name "blast".
|
---|
9 | *
|
---|
10 | * This decompressor is based on the excellent format description provided by
|
---|
11 | * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the
|
---|
12 | * example Ben provided in the post is incorrect. The distance 110001 should
|
---|
13 | * instead be 111000. When corrected, the example byte stream becomes:
|
---|
14 | *
|
---|
15 | * 00 04 82 24 25 8f 80 7f
|
---|
16 | *
|
---|
17 | * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * Change history:
|
---|
22 | *
|
---|
23 | * 1.0 12 Feb 2003 - First version
|
---|
24 | * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data
|
---|
25 | * 1.2 24 Oct 2012 - Add note about using binary mode in stdio
|
---|
26 | * - Fix comparisons of differently signed integers
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
|
---|
30 | #include "blast.h" /* prototype for blast() */
|
---|
31 |
|
---|
32 | #define local static /* for local function definitions */
|
---|
33 | #define MAXBITS 13 /* maximum code length */
|
---|
34 | #define MAXWIN 4096 /* maximum window size */
|
---|
35 |
|
---|
36 | /* input and output state */
|
---|
37 | struct state {
|
---|
38 | /* input state */
|
---|
39 | blast_in infun; /* input function provided by user */
|
---|
40 | void *inhow; /* opaque information passed to infun() */
|
---|
41 | unsigned char *in; /* next input location */
|
---|
42 | unsigned left; /* available input at in */
|
---|
43 | int bitbuf; /* bit buffer */
|
---|
44 | int bitcnt; /* number of bits in bit buffer */
|
---|
45 |
|
---|
46 | /* input limit error return state for bits() and decode() */
|
---|
47 | jmp_buf env;
|
---|
48 |
|
---|
49 | /* output state */
|
---|
50 | blast_out outfun; /* output function provided by user */
|
---|
51 | void *outhow; /* opaque information passed to outfun() */
|
---|
52 | unsigned next; /* index of next write location in out[] */
|
---|
53 | int first; /* true to check distances (for first 4K) */
|
---|
54 | unsigned char out[MAXWIN]; /* output buffer and sliding window */
|
---|
55 | };
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * Return need bits from the input stream. This always leaves less than
|
---|
59 | * eight bits in the buffer. bits() works properly for need == 0.
|
---|
60 | *
|
---|
61 | * Format notes:
|
---|
62 | *
|
---|
63 | * - Bits are stored in bytes from the least significant bit to the most
|
---|
64 | * significant bit. Therefore bits are dropped from the bottom of the bit
|
---|
65 | * buffer, using shift right, and new bytes are appended to the top of the
|
---|
66 | * bit buffer, using shift left.
|
---|
67 | */
|
---|
68 | local int bits(struct state *s, int need)
|
---|
69 | {
|
---|
70 | int val; /* bit accumulator */
|
---|
71 |
|
---|
72 | /* load at least need bits into val */
|
---|
73 | val = s->bitbuf;
|
---|
74 | while (s->bitcnt < need) {
|
---|
75 | if (s->left == 0) {
|
---|
76 | s->left = s->infun(s->inhow, &(s->in));
|
---|
77 | if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
---|
78 | }
|
---|
79 | val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */
|
---|
80 | s->left--;
|
---|
81 | s->bitcnt += 8;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /* drop need bits and update buffer, always zero to seven bits left */
|
---|
85 | s->bitbuf = val >> need;
|
---|
86 | s->bitcnt -= need;
|
---|
87 |
|
---|
88 | /* return need bits, zeroing the bits above that */
|
---|
89 | return val & ((1 << need) - 1);
|
---|
90 | }
|
---|
91 |
|
---|
92 | /*
|
---|
93 | * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
|
---|
94 | * each length, which for a canonical code are stepped through in order.
|
---|
95 | * symbol[] are the symbol values in canonical order, where the number of
|
---|
96 | * entries is the sum of the counts in count[]. The decoding process can be
|
---|
97 | * seen in the function decode() below.
|
---|
98 | */
|
---|
99 | struct huffman {
|
---|
100 | short *count; /* number of symbols of each length */
|
---|
101 | short *symbol; /* canonically ordered symbols */
|
---|
102 | };
|
---|
103 |
|
---|
104 | /*
|
---|
105 | * Decode a code from the stream s using huffman table h. Return the symbol or
|
---|
106 | * a negative value if there is an error. If all of the lengths are zero, i.e.
|
---|
107 | * an empty code, or if the code is incomplete and an invalid code is received,
|
---|
108 | * then -9 is returned after reading MAXBITS bits.
|
---|
109 | *
|
---|
110 | * Format notes:
|
---|
111 | *
|
---|
112 | * - The codes as stored in the compressed data are bit-reversed relative to
|
---|
113 | * a simple integer ordering of codes of the same lengths. Hence below the
|
---|
114 | * bits are pulled from the compressed data one at a time and used to
|
---|
115 | * build the code value reversed from what is in the stream in order to
|
---|
116 | * permit simple integer comparisons for decoding.
|
---|
117 | *
|
---|
118 | * - The first code for the shortest length is all ones. Subsequent codes of
|
---|
119 | * the same length are simply integer decrements of the previous code. When
|
---|
120 | * moving up a length, a one bit is appended to the code. For a complete
|
---|
121 | * code, the last code of the longest length will be all zeros. To support
|
---|
122 | * this ordering, the bits pulled during decoding are inverted to apply the
|
---|
123 | * more "natural" ordering starting with all zeros and incrementing.
|
---|
124 | */
|
---|
125 | local int decode(struct state *s, struct huffman *h)
|
---|
126 | {
|
---|
127 | int len; /* current number of bits in code */
|
---|
128 | int code; /* len bits being decoded */
|
---|
129 | int first; /* first code of length len */
|
---|
130 | int count; /* number of codes of length len */
|
---|
131 | int index; /* index of first code of length len in symbol table */
|
---|
132 | int bitbuf; /* bits from stream */
|
---|
133 | int left; /* bits left in next or left to process */
|
---|
134 | short *next; /* next number of codes */
|
---|
135 |
|
---|
136 | bitbuf = s->bitbuf;
|
---|
137 | left = s->bitcnt;
|
---|
138 | code = first = index = 0;
|
---|
139 | len = 1;
|
---|
140 | next = h->count + 1;
|
---|
141 | while (1) {
|
---|
142 | while (left--) {
|
---|
143 | code |= (bitbuf & 1) ^ 1; /* invert code */
|
---|
144 | bitbuf >>= 1;
|
---|
145 | count = *next++;
|
---|
146 | if (code < first + count) { /* if length len, return symbol */
|
---|
147 | s->bitbuf = bitbuf;
|
---|
148 | s->bitcnt = (s->bitcnt - len) & 7;
|
---|
149 | return h->symbol[index + (code - first)];
|
---|
150 | }
|
---|
151 | index += count; /* else update for next length */
|
---|
152 | first += count;
|
---|
153 | first <<= 1;
|
---|
154 | code <<= 1;
|
---|
155 | len++;
|
---|
156 | }
|
---|
157 | left = (MAXBITS+1) - len;
|
---|
158 | if (left == 0) break;
|
---|
159 | if (s->left == 0) {
|
---|
160 | s->left = s->infun(s->inhow, &(s->in));
|
---|
161 | if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
---|
162 | }
|
---|
163 | bitbuf = *(s->in)++;
|
---|
164 | s->left--;
|
---|
165 | if (left > 8) left = 8;
|
---|
166 | }
|
---|
167 | return -9; /* ran out of codes */
|
---|
168 | }
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
---|
172 | * count (high four bits + 1) and a code length (low four bits), generate the
|
---|
173 | * list of code lengths. This compaction reduces the size of the object code.
|
---|
174 | * Then given the list of code lengths length[0..n-1] representing a canonical
|
---|
175 | * Huffman code for n symbols, construct the tables required to decode those
|
---|
176 | * codes. Those tables are the number of codes of each length, and the symbols
|
---|
177 | * sorted by length, retaining their original order within each length. The
|
---|
178 | * return value is zero for a complete code set, negative for an over-
|
---|
179 | * subscribed code set, and positive for an incomplete code set. The tables
|
---|
180 | * can be used if the return value is zero or positive, but they cannot be used
|
---|
181 | * if the return value is negative. If the return value is zero, it is not
|
---|
182 | * possible for decode() using that table to return an error--any stream of
|
---|
183 | * enough bits will resolve to a symbol. If the return value is positive, then
|
---|
184 | * it is possible for decode() using that table to return an error for received
|
---|
185 | * codes past the end of the incomplete lengths.
|
---|
186 | */
|
---|
187 | local int construct(struct huffman *h, const unsigned char *rep, int n)
|
---|
188 | {
|
---|
189 | int symbol; /* current symbol when stepping through length[] */
|
---|
190 | int len; /* current length when stepping through h->count[] */
|
---|
191 | int left; /* number of possible codes left of current length */
|
---|
192 | short offs[MAXBITS+1]; /* offsets in symbol table for each length */
|
---|
193 | short length[256]; /* code lengths */
|
---|
194 |
|
---|
195 | /* convert compact repeat counts into symbol bit length list */
|
---|
196 | symbol = 0;
|
---|
197 | do {
|
---|
198 | len = *rep++;
|
---|
199 | left = (len >> 4) + 1;
|
---|
200 | len &= 15;
|
---|
201 | do {
|
---|
202 | length[symbol++] = len;
|
---|
203 | } while (--left);
|
---|
204 | } while (--n);
|
---|
205 | n = symbol;
|
---|
206 |
|
---|
207 | /* count number of codes of each length */
|
---|
208 | for (len = 0; len <= MAXBITS; len++)
|
---|
209 | h->count[len] = 0;
|
---|
210 | for (symbol = 0; symbol < n; symbol++)
|
---|
211 | (h->count[length[symbol]])++; /* assumes lengths are within bounds */
|
---|
212 | if (h->count[0] == n) /* no codes! */
|
---|
213 | return 0; /* complete, but decode() will fail */
|
---|
214 |
|
---|
215 | /* check for an over-subscribed or incomplete set of lengths */
|
---|
216 | left = 1; /* one possible code of zero length */
|
---|
217 | for (len = 1; len <= MAXBITS; len++) {
|
---|
218 | left <<= 1; /* one more bit, double codes left */
|
---|
219 | left -= h->count[len]; /* deduct count from possible codes */
|
---|
220 | if (left < 0) return left; /* over-subscribed--return negative */
|
---|
221 | } /* left > 0 means incomplete */
|
---|
222 |
|
---|
223 | /* generate offsets into symbol table for each length for sorting */
|
---|
224 | offs[1] = 0;
|
---|
225 | for (len = 1; len < MAXBITS; len++)
|
---|
226 | offs[len + 1] = offs[len] + h->count[len];
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * put symbols in table sorted by length, by symbol order within each
|
---|
230 | * length
|
---|
231 | */
|
---|
232 | for (symbol = 0; symbol < n; symbol++)
|
---|
233 | if (length[symbol] != 0)
|
---|
234 | h->symbol[offs[length[symbol]]++] = symbol;
|
---|
235 |
|
---|
236 | /* return zero for complete set, positive for incomplete set */
|
---|
237 | return left;
|
---|
238 | }
|
---|
239 |
|
---|
240 | /*
|
---|
241 | * Decode PKWare Compression Library stream.
|
---|
242 | *
|
---|
243 | * Format notes:
|
---|
244 | *
|
---|
245 | * - First byte is 0 if literals are uncoded or 1 if they are coded. Second
|
---|
246 | * byte is 4, 5, or 6 for the number of extra bits in the distance code.
|
---|
247 | * This is the base-2 logarithm of the dictionary size minus six.
|
---|
248 | *
|
---|
249 | * - Compressed data is a combination of literals and length/distance pairs
|
---|
250 | * terminated by an end code. Literals are either Huffman coded or
|
---|
251 | * uncoded bytes. A length/distance pair is a coded length followed by a
|
---|
252 | * coded distance to represent a string that occurs earlier in the
|
---|
253 | * uncompressed data that occurs again at the current location.
|
---|
254 | *
|
---|
255 | * - A bit preceding a literal or length/distance pair indicates which comes
|
---|
256 | * next, 0 for literals, 1 for length/distance.
|
---|
257 | *
|
---|
258 | * - If literals are uncoded, then the next eight bits are the literal, in the
|
---|
259 | * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
|
---|
260 | * no bit reversal is needed for either the length extra bits or the distance
|
---|
261 | * extra bits.
|
---|
262 | *
|
---|
263 | * - Literal bytes are simply written to the output. A length/distance pair is
|
---|
264 | * an instruction to copy previously uncompressed bytes to the output. The
|
---|
265 | * copy is from distance bytes back in the output stream, copying for length
|
---|
266 | * bytes.
|
---|
267 | *
|
---|
268 | * - Distances pointing before the beginning of the output data are not
|
---|
269 | * permitted.
|
---|
270 | *
|
---|
271 | * - Overlapped copies, where the length is greater than the distance, are
|
---|
272 | * allowed and common. For example, a distance of one and a length of 518
|
---|
273 | * simply copies the last byte 518 times. A distance of four and a length of
|
---|
274 | * twelve copies the last four bytes three times. A simple forward copy
|
---|
275 | * ignoring whether the length is greater than the distance or not implements
|
---|
276 | * this correctly.
|
---|
277 | */
|
---|
278 | local int decomp(struct state *s)
|
---|
279 | {
|
---|
280 | int lit; /* true if literals are coded */
|
---|
281 | int dict; /* log2(dictionary size) - 6 */
|
---|
282 | int symbol; /* decoded symbol, extra bits for distance */
|
---|
283 | int len; /* length for copy */
|
---|
284 | unsigned dist; /* distance for copy */
|
---|
285 | int copy; /* copy counter */
|
---|
286 | unsigned char *from, *to; /* copy pointers */
|
---|
287 | static int virgin = 1; /* build tables once */
|
---|
288 | static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */
|
---|
289 | static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */
|
---|
290 | static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */
|
---|
291 | static struct huffman litcode = {litcnt, litsym}; /* length code */
|
---|
292 | static struct huffman lencode = {lencnt, lensym}; /* length code */
|
---|
293 | static struct huffman distcode = {distcnt, distsym};/* distance code */
|
---|
294 | /* bit lengths of literal codes */
|
---|
295 | static const unsigned char litlen[] = {
|
---|
296 | 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
|
---|
297 | 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
---|
298 | 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
---|
299 | 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
---|
300 | 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
|
---|
301 | 44, 173};
|
---|
302 | /* bit lengths of length codes 0..15 */
|
---|
303 | static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
|
---|
304 | /* bit lengths of distance codes 0..63 */
|
---|
305 | static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
|
---|
306 | static const short base[16] = { /* base for length codes */
|
---|
307 | 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
|
---|
308 | static const char extra[16] = { /* extra bits for length codes */
|
---|
309 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
|
---|
310 |
|
---|
311 | /* set up decoding tables (once--might not be thread-safe) */
|
---|
312 | if (virgin) {
|
---|
313 | construct(&litcode, litlen, sizeof(litlen));
|
---|
314 | construct(&lencode, lenlen, sizeof(lenlen));
|
---|
315 | construct(&distcode, distlen, sizeof(distlen));
|
---|
316 | virgin = 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /* read header */
|
---|
320 | lit = bits(s, 8);
|
---|
321 | if (lit > 1) return -1;
|
---|
322 | dict = bits(s, 8);
|
---|
323 | if (dict < 4 || dict > 6) return -2;
|
---|
324 |
|
---|
325 | /* decode literals and length/distance pairs */
|
---|
326 | do {
|
---|
327 | if (bits(s, 1)) {
|
---|
328 | /* get length */
|
---|
329 | symbol = decode(s, &lencode);
|
---|
330 | len = base[symbol] + bits(s, extra[symbol]);
|
---|
331 | if (len == 519) break; /* end code */
|
---|
332 |
|
---|
333 | /* get distance */
|
---|
334 | symbol = len == 2 ? 2 : dict;
|
---|
335 | dist = decode(s, &distcode) << symbol;
|
---|
336 | dist += bits(s, symbol);
|
---|
337 | dist++;
|
---|
338 | if (s->first && dist > s->next)
|
---|
339 | return -3; /* distance too far back */
|
---|
340 |
|
---|
341 | /* copy length bytes from distance bytes back */
|
---|
342 | do {
|
---|
343 | to = s->out + s->next;
|
---|
344 | from = to - dist;
|
---|
345 | copy = MAXWIN;
|
---|
346 | if (s->next < dist) {
|
---|
347 | from += copy;
|
---|
348 | copy = dist;
|
---|
349 | }
|
---|
350 | copy -= s->next;
|
---|
351 | if (copy > len) copy = len;
|
---|
352 | len -= copy;
|
---|
353 | s->next += copy;
|
---|
354 | do {
|
---|
355 | *to++ = *from++;
|
---|
356 | } while (--copy);
|
---|
357 | if (s->next == MAXWIN) {
|
---|
358 | if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
---|
359 | s->next = 0;
|
---|
360 | s->first = 0;
|
---|
361 | }
|
---|
362 | } while (len != 0);
|
---|
363 | }
|
---|
364 | else {
|
---|
365 | /* get literal and write it */
|
---|
366 | symbol = lit ? decode(s, &litcode) : bits(s, 8);
|
---|
367 | s->out[s->next++] = symbol;
|
---|
368 | if (s->next == MAXWIN) {
|
---|
369 | if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
---|
370 | s->next = 0;
|
---|
371 | s->first = 0;
|
---|
372 | }
|
---|
373 | }
|
---|
374 | } while (1);
|
---|
375 | return 0;
|
---|
376 | }
|
---|
377 |
|
---|
378 | /* See comments in blast.h */
|
---|
379 | int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
|
---|
380 | {
|
---|
381 | struct state s; /* input/output state */
|
---|
382 | int err; /* return value */
|
---|
383 |
|
---|
384 | /* initialize input state */
|
---|
385 | s.infun = infun;
|
---|
386 | s.inhow = inhow;
|
---|
387 | s.left = 0;
|
---|
388 | s.bitbuf = 0;
|
---|
389 | s.bitcnt = 0;
|
---|
390 |
|
---|
391 | /* initialize output state */
|
---|
392 | s.outfun = outfun;
|
---|
393 | s.outhow = outhow;
|
---|
394 | s.next = 0;
|
---|
395 | s.first = 1;
|
---|
396 |
|
---|
397 | /* return if bits() or decode() tries to read past available input */
|
---|
398 | if (setjmp(s.env) != 0) /* if came back here via longjmp(), */
|
---|
399 | err = 2; /* then skip decomp(), return error */
|
---|
400 | else
|
---|
401 | err = decomp(&s); /* decompress */
|
---|
402 |
|
---|
403 | /* write any leftover output and update the error code if needed */
|
---|
404 | if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
|
---|
405 | err = 1;
|
---|
406 | return err;
|
---|
407 | }
|
---|
408 |
|
---|
409 | #ifdef TEST
|
---|
410 | /* Example of how to use blast() */
|
---|
411 | #include <stdio.h>
|
---|
412 | #include <stdlib.h>
|
---|
413 |
|
---|
414 | #define CHUNK 16384
|
---|
415 |
|
---|
416 | local unsigned inf(void *how, unsigned char **buf)
|
---|
417 | {
|
---|
418 | static unsigned char hold[CHUNK];
|
---|
419 |
|
---|
420 | *buf = hold;
|
---|
421 | return fread(hold, 1, CHUNK, (FILE *)how);
|
---|
422 | }
|
---|
423 |
|
---|
424 | local int outf(void *how, unsigned char *buf, unsigned len)
|
---|
425 | {
|
---|
426 | return fwrite(buf, 1, len, (FILE *)how) != len;
|
---|
427 | }
|
---|
428 |
|
---|
429 | /* Decompress a PKWare Compression Library stream from stdin to stdout */
|
---|
430 | int main(void)
|
---|
431 | {
|
---|
432 | int ret, n;
|
---|
433 |
|
---|
434 | /* decompress to stdout */
|
---|
435 | ret = blast(inf, stdin, outf, stdout);
|
---|
436 | if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
|
---|
437 |
|
---|
438 | /* see if there are any leftover bytes */
|
---|
439 | n = 0;
|
---|
440 | while (getchar() != EOF) n++;
|
---|
441 | if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
|
---|
442 |
|
---|
443 | /* return blast() error code */
|
---|
444 | return ret;
|
---|
445 | }
|
---|
446 | #endif
|
---|