[1096] | 1 | /* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
---|
| 2 | * all possible valid and complete Huffman codes, subject to a length limit.
|
---|
| 3 | * Copyright (C) 2007, 2008, 2012 Mark Adler
|
---|
| 4 | * Version 1.4 18 August 2012 Mark Adler
|
---|
| 5 | */
|
---|
| 6 |
|
---|
| 7 | /* Version history:
|
---|
| 8 | 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
|
---|
| 9 | 1.1 4 Jan 2007 Use faster incremental table usage computation
|
---|
| 10 | Prune examine() search on previously visited states
|
---|
| 11 | 1.2 5 Jan 2007 Comments clean up
|
---|
| 12 | As inflate does, decrease root for short codes
|
---|
| 13 | Refuse cases where inflate would increase root
|
---|
| 14 | 1.3 17 Feb 2008 Add argument for initial root table size
|
---|
| 15 | Fix bug for initial root table size == max - 1
|
---|
| 16 | Use a macro to compute the history index
|
---|
| 17 | 1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
|
---|
| 18 | Clean up comparisons of different types
|
---|
| 19 | Clean up code indentation
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | /*
|
---|
| 23 | Examine all possible Huffman codes for a given number of symbols and a
|
---|
| 24 | maximum code length in bits to determine the maximum table size for zilb's
|
---|
| 25 | inflate. Only complete Huffman codes are counted.
|
---|
| 26 |
|
---|
| 27 | Two codes are considered distinct if the vectors of the number of codes per
|
---|
| 28 | length are not identical. So permutations of the symbol assignments result
|
---|
| 29 | in the same code for the counting, as do permutations of the assignments of
|
---|
| 30 | the bit values to the codes (i.e. only canonical codes are counted).
|
---|
| 31 |
|
---|
| 32 | We build a code from shorter to longer lengths, determining how many symbols
|
---|
| 33 | are coded at each length. At each step, we have how many symbols remain to
|
---|
| 34 | be coded, what the last code length used was, and how many bit patterns of
|
---|
| 35 | that length remain unused. Then we add one to the code length and double the
|
---|
| 36 | number of unused patterns to graduate to the next code length. We then
|
---|
| 37 | assign all portions of the remaining symbols to that code length that
|
---|
| 38 | preserve the properties of a correct and eventually complete code. Those
|
---|
| 39 | properties are: we cannot use more bit patterns than are available; and when
|
---|
| 40 | all the symbols are used, there are exactly zero possible bit patterns
|
---|
| 41 | remaining.
|
---|
| 42 |
|
---|
| 43 | The inflate Huffman decoding algorithm uses two-level lookup tables for
|
---|
| 44 | speed. There is a single first-level table to decode codes up to root bits
|
---|
| 45 | in length (root == 9 in the current inflate implementation). The table
|
---|
| 46 | has 1 << root entries and is indexed by the next root bits of input. Codes
|
---|
| 47 | shorter than root bits have replicated table entries, so that the correct
|
---|
| 48 | entry is pointed to regardless of the bits that follow the short code. If
|
---|
| 49 | the code is longer than root bits, then the table entry points to a second-
|
---|
| 50 | level table. The size of that table is determined by the longest code with
|
---|
| 51 | that root-bit prefix. If that longest code has length len, then the table
|
---|
| 52 | has size 1 << (len - root), to index the remaining bits in that set of
|
---|
| 53 | codes. Each subsequent root-bit prefix then has its own sub-table. The
|
---|
| 54 | total number of table entries required by the code is calculated
|
---|
| 55 | incrementally as the number of codes at each bit length is populated. When
|
---|
| 56 | all of the codes are shorter than root bits, then root is reduced to the
|
---|
| 57 | longest code length, resulting in a single, smaller, one-level table.
|
---|
| 58 |
|
---|
| 59 | The inflate algorithm also provides for small values of root (relative to
|
---|
| 60 | the log2 of the number of symbols), where the shortest code has more bits
|
---|
| 61 | than root. In that case, root is increased to the length of the shortest
|
---|
| 62 | code. This program, by design, does not handle that case, so it is verified
|
---|
| 63 | that the number of symbols is less than 2^(root + 1).
|
---|
| 64 |
|
---|
| 65 | In order to speed up the examination (by about ten orders of magnitude for
|
---|
| 66 | the default arguments), the intermediate states in the build-up of a code
|
---|
| 67 | are remembered and previously visited branches are pruned. The memory
|
---|
| 68 | required for this will increase rapidly with the total number of symbols and
|
---|
| 69 | the maximum code length in bits. However this is a very small price to pay
|
---|
| 70 | for the vast speedup.
|
---|
| 71 |
|
---|
| 72 | First, all of the possible Huffman codes are counted, and reachable
|
---|
| 73 | intermediate states are noted by a non-zero count in a saved-results array.
|
---|
| 74 | Second, the intermediate states that lead to (root + 1) bit or longer codes
|
---|
| 75 | are used to look at all sub-codes from those junctures for their inflate
|
---|
| 76 | memory usage. (The amount of memory used is not affected by the number of
|
---|
| 77 | codes of root bits or less in length.) Third, the visited states in the
|
---|
| 78 | construction of those sub-codes and the associated calculation of the table
|
---|
| 79 | size is recalled in order to avoid recalculating from the same juncture.
|
---|
| 80 | Beginning the code examination at (root + 1) bit codes, which is enabled by
|
---|
| 81 | identifying the reachable nodes, accounts for about six of the orders of
|
---|
| 82 | magnitude of improvement for the default arguments. About another four
|
---|
| 83 | orders of magnitude come from not revisiting previous states. Out of
|
---|
| 84 | approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
|
---|
| 85 | need to be examined to cover all of the possible table memory usage cases
|
---|
| 86 | for the default arguments of 286 symbols limited to 15-bit codes.
|
---|
| 87 |
|
---|
| 88 | Note that an unsigned long long type is used for counting. It is quite easy
|
---|
| 89 | to exceed the capacity of an eight-byte integer with a large number of
|
---|
| 90 | symbols and a large maximum code length, so multiple-precision arithmetic
|
---|
| 91 | would need to replace the unsigned long long arithmetic in that case. This
|
---|
| 92 | program will abort if an overflow occurs. The big_t type identifies where
|
---|
| 93 | the counting takes place.
|
---|
| 94 |
|
---|
| 95 | An unsigned long long type is also used for calculating the number of
|
---|
| 96 | possible codes remaining at the maximum length. This limits the maximum
|
---|
| 97 | code length to the number of bits in a long long minus the number of bits
|
---|
| 98 | needed to represent the symbols in a flat code. The code_t type identifies
|
---|
| 99 | where the bit pattern counting takes place.
|
---|
| 100 | */
|
---|
| 101 |
|
---|
| 102 | #include <stdio.h>
|
---|
| 103 | #include <stdlib.h>
|
---|
| 104 | #include <string.h>
|
---|
| 105 | #include <assert.h>
|
---|
| 106 |
|
---|
| 107 | #define local static
|
---|
| 108 |
|
---|
| 109 | /* special data types */
|
---|
| 110 | typedef unsigned long long big_t; /* type for code counting */
|
---|
| 111 | typedef unsigned long long code_t; /* type for bit pattern counting */
|
---|
| 112 | struct tab { /* type for been here check */
|
---|
| 113 | size_t len; /* length of bit vector in char's */
|
---|
| 114 | char *vec; /* allocated bit vector */
|
---|
| 115 | };
|
---|
| 116 |
|
---|
| 117 | /* The array for saving results, num[], is indexed with this triplet:
|
---|
| 118 |
|
---|
| 119 | syms: number of symbols remaining to code
|
---|
| 120 | left: number of available bit patterns at length len
|
---|
| 121 | len: number of bits in the codes currently being assigned
|
---|
| 122 |
|
---|
| 123 | Those indices are constrained thusly when saving results:
|
---|
| 124 |
|
---|
| 125 | syms: 3..totsym (totsym == total symbols to code)
|
---|
| 126 | left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
|
---|
| 127 | len: 1..max - 1 (max == maximum code length in bits)
|
---|
| 128 |
|
---|
| 129 | syms == 2 is not saved since that immediately leads to a single code. left
|
---|
| 130 | must be even, since it represents the number of available bit patterns at
|
---|
| 131 | the current length, which is double the number at the previous length.
|
---|
| 132 | left ends at syms-1 since left == syms immediately results in a single code.
|
---|
| 133 | (left > sym is not allowed since that would result in an incomplete code.)
|
---|
| 134 | len is less than max, since the code completes immediately when len == max.
|
---|
| 135 |
|
---|
| 136 | The offset into the array is calculated for the three indices with the
|
---|
| 137 | first one (syms) being outermost, and the last one (len) being innermost.
|
---|
| 138 | We build the array with length max-1 lists for the len index, with syms-3
|
---|
| 139 | of those for each symbol. There are totsym-2 of those, with each one
|
---|
| 140 | varying in length as a function of sym. See the calculation of index in
|
---|
| 141 | count() for the index, and the calculation of size in main() for the size
|
---|
| 142 | of the array.
|
---|
| 143 |
|
---|
| 144 | For the deflate example of 286 symbols limited to 15-bit codes, the array
|
---|
| 145 | has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
|
---|
| 146 | half of the space allocated for saved results is actually used -- not all
|
---|
| 147 | possible triplets are reached in the generation of valid Huffman codes.
|
---|
| 148 | */
|
---|
| 149 |
|
---|
| 150 | /* The array for tracking visited states, done[], is itself indexed identically
|
---|
| 151 | to the num[] array as described above for the (syms, left, len) triplet.
|
---|
| 152 | Each element in the array is further indexed by the (mem, rem) doublet,
|
---|
| 153 | where mem is the amount of inflate table space used so far, and rem is the
|
---|
| 154 | remaining unused entries in the current inflate sub-table. Each indexed
|
---|
| 155 | element is simply one bit indicating whether the state has been visited or
|
---|
| 156 | not. Since the ranges for mem and rem are not known a priori, each bit
|
---|
| 157 | vector is of a variable size, and grows as needed to accommodate the visited
|
---|
| 158 | states. mem and rem are used to calculate a single index in a triangular
|
---|
| 159 | array. Since the range of mem is expected in the default case to be about
|
---|
| 160 | ten times larger than the range of rem, the array is skewed to reduce the
|
---|
| 161 | memory usage, with eight times the range for mem than for rem. See the
|
---|
| 162 | calculations for offset and bit in beenhere() for the details.
|
---|
| 163 |
|
---|
| 164 | For the deflate example of 286 symbols limited to 15-bit codes, the bit
|
---|
| 165 | vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
|
---|
| 166 | array itself.
|
---|
| 167 | */
|
---|
| 168 |
|
---|
| 169 | /* Globals to avoid propagating constants or constant pointers recursively */
|
---|
| 170 | local int max; /* maximum allowed bit length for the codes */
|
---|
| 171 | local int root; /* size of base code table in bits */
|
---|
| 172 | local int large; /* largest code table so far */
|
---|
| 173 | local size_t size; /* number of elements in num and done */
|
---|
| 174 | local int *code; /* number of symbols assigned to each bit length */
|
---|
| 175 | local big_t *num; /* saved results array for code counting */
|
---|
| 176 | local struct tab *done; /* states already evaluated array */
|
---|
| 177 |
|
---|
| 178 | /* Index function for num[] and done[] */
|
---|
| 179 | #define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
|
---|
| 180 |
|
---|
| 181 | /* Free allocated space. Uses globals code, num, and done. */
|
---|
| 182 | local void cleanup(void)
|
---|
| 183 | {
|
---|
| 184 | size_t n;
|
---|
| 185 |
|
---|
| 186 | if (done != NULL) {
|
---|
| 187 | for (n = 0; n < size; n++)
|
---|
| 188 | if (done[n].len)
|
---|
| 189 | free(done[n].vec);
|
---|
| 190 | free(done);
|
---|
| 191 | }
|
---|
| 192 | if (num != NULL)
|
---|
| 193 | free(num);
|
---|
| 194 | if (code != NULL)
|
---|
| 195 | free(code);
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | /* Return the number of possible Huffman codes using bit patterns of lengths
|
---|
| 199 | len through max inclusive, coding syms symbols, with left bit patterns of
|
---|
| 200 | length len unused -- return -1 if there is an overflow in the counting.
|
---|
| 201 | Keep a record of previous results in num to prevent repeating the same
|
---|
| 202 | calculation. Uses the globals max and num. */
|
---|
| 203 | local big_t count(int syms, int len, int left)
|
---|
| 204 | {
|
---|
| 205 | big_t sum; /* number of possible codes from this juncture */
|
---|
| 206 | big_t got; /* value returned from count() */
|
---|
| 207 | int least; /* least number of syms to use at this juncture */
|
---|
| 208 | int most; /* most number of syms to use at this juncture */
|
---|
| 209 | int use; /* number of bit patterns to use in next call */
|
---|
| 210 | size_t index; /* index of this case in *num */
|
---|
| 211 |
|
---|
| 212 | /* see if only one possible code */
|
---|
| 213 | if (syms == left)
|
---|
| 214 | return 1;
|
---|
| 215 |
|
---|
| 216 | /* note and verify the expected state */
|
---|
| 217 | assert(syms > left && left > 0 && len < max);
|
---|
| 218 |
|
---|
| 219 | /* see if we've done this one already */
|
---|
| 220 | index = INDEX(syms, left, len);
|
---|
| 221 | got = num[index];
|
---|
| 222 | if (got)
|
---|
| 223 | return got; /* we have -- return the saved result */
|
---|
| 224 |
|
---|
| 225 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
| 226 | incomplete at the next length (more bit patterns than symbols) */
|
---|
| 227 | least = (left << 1) - syms;
|
---|
| 228 | if (least < 0)
|
---|
| 229 | least = 0;
|
---|
| 230 |
|
---|
| 231 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
| 232 | available for the remaining symbols at the maximum length (if there were
|
---|
| 233 | no limit to the code length, this would become: most = left - 1) */
|
---|
| 234 | most = (((code_t)left << (max - len)) - syms) /
|
---|
| 235 | (((code_t)1 << (max - len)) - 1);
|
---|
| 236 |
|
---|
| 237 | /* count all possible codes from this juncture and add them up */
|
---|
| 238 | sum = 0;
|
---|
| 239 | for (use = least; use <= most; use++) {
|
---|
| 240 | got = count(syms - use, len + 1, (left - use) << 1);
|
---|
| 241 | sum += got;
|
---|
| 242 | if (got == (big_t)0 - 1 || sum < got) /* overflow */
|
---|
| 243 | return (big_t)0 - 1;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | /* verify that all recursive calls are productive */
|
---|
| 247 | assert(sum != 0);
|
---|
| 248 |
|
---|
| 249 | /* save the result and return it */
|
---|
| 250 | num[index] = sum;
|
---|
| 251 | return sum;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | /* Return true if we've been here before, set to true if not. Set a bit in a
|
---|
| 255 | bit vector to indicate visiting this state. Each (syms,len,left) state
|
---|
| 256 | has a variable size bit vector indexed by (mem,rem). The bit vector is
|
---|
| 257 | lengthened if needed to allow setting the (mem,rem) bit. */
|
---|
| 258 | local int beenhere(int syms, int len, int left, int mem, int rem)
|
---|
| 259 | {
|
---|
| 260 | size_t index; /* index for this state's bit vector */
|
---|
| 261 | size_t offset; /* offset in this state's bit vector */
|
---|
| 262 | int bit; /* mask for this state's bit */
|
---|
| 263 | size_t length; /* length of the bit vector in bytes */
|
---|
| 264 | char *vector; /* new or enlarged bit vector */
|
---|
| 265 |
|
---|
| 266 | /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
|
---|
| 267 | index = INDEX(syms, left, len);
|
---|
| 268 | mem -= 1 << root;
|
---|
| 269 | offset = (mem >> 3) + rem;
|
---|
| 270 | offset = ((offset * (offset + 1)) >> 1) + rem;
|
---|
| 271 | bit = 1 << (mem & 7);
|
---|
| 272 |
|
---|
| 273 | /* see if we've been here */
|
---|
| 274 | length = done[index].len;
|
---|
| 275 | if (offset < length && (done[index].vec[offset] & bit) != 0)
|
---|
| 276 | return 1; /* done this! */
|
---|
| 277 |
|
---|
| 278 | /* we haven't been here before -- set the bit to show we have now */
|
---|
| 279 |
|
---|
| 280 | /* see if we need to lengthen the vector in order to set the bit */
|
---|
| 281 | if (length <= offset) {
|
---|
| 282 | /* if we have one already, enlarge it, zero out the appended space */
|
---|
| 283 | if (length) {
|
---|
| 284 | do {
|
---|
| 285 | length <<= 1;
|
---|
| 286 | } while (length <= offset);
|
---|
| 287 | vector = realloc(done[index].vec, length);
|
---|
| 288 | if (vector != NULL)
|
---|
| 289 | memset(vector + done[index].len, 0, length - done[index].len);
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | /* otherwise we need to make a new vector and zero it out */
|
---|
| 293 | else {
|
---|
| 294 | length = 1 << (len - root);
|
---|
| 295 | while (length <= offset)
|
---|
| 296 | length <<= 1;
|
---|
| 297 | vector = calloc(length, sizeof(char));
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | /* in either case, bail if we can't get the memory */
|
---|
| 301 | if (vector == NULL) {
|
---|
| 302 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
| 303 | cleanup();
|
---|
| 304 | exit(1);
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 | /* install the new vector */
|
---|
| 308 | done[index].len = length;
|
---|
| 309 | done[index].vec = vector;
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | /* set the bit */
|
---|
| 313 | done[index].vec[offset] |= bit;
|
---|
| 314 | return 0;
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | /* Examine all possible codes from the given node (syms, len, left). Compute
|
---|
| 318 | the amount of memory required to build inflate's decoding tables, where the
|
---|
| 319 | number of code structures used so far is mem, and the number remaining in
|
---|
| 320 | the current sub-table is rem. Uses the globals max, code, root, large, and
|
---|
| 321 | done. */
|
---|
| 322 | local void examine(int syms, int len, int left, int mem, int rem)
|
---|
| 323 | {
|
---|
| 324 | int least; /* least number of syms to use at this juncture */
|
---|
| 325 | int most; /* most number of syms to use at this juncture */
|
---|
| 326 | int use; /* number of bit patterns to use in next call */
|
---|
| 327 |
|
---|
| 328 | /* see if we have a complete code */
|
---|
| 329 | if (syms == left) {
|
---|
| 330 | /* set the last code entry */
|
---|
| 331 | code[len] = left;
|
---|
| 332 |
|
---|
| 333 | /* complete computation of memory used by this code */
|
---|
| 334 | while (rem < left) {
|
---|
| 335 | left -= rem;
|
---|
| 336 | rem = 1 << (len - root);
|
---|
| 337 | mem += rem;
|
---|
| 338 | }
|
---|
| 339 | assert(rem == left);
|
---|
| 340 |
|
---|
| 341 | /* if this is a new maximum, show the entries used and the sub-code */
|
---|
| 342 | if (mem > large) {
|
---|
| 343 | large = mem;
|
---|
| 344 | printf("max %d: ", mem);
|
---|
| 345 | for (use = root + 1; use <= max; use++)
|
---|
| 346 | if (code[use])
|
---|
| 347 | printf("%d[%d] ", code[use], use);
|
---|
| 348 | putchar('\n');
|
---|
| 349 | fflush(stdout);
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | /* remove entries as we drop back down in the recursion */
|
---|
| 353 | code[len] = 0;
|
---|
| 354 | return;
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /* prune the tree if we can */
|
---|
| 358 | if (beenhere(syms, len, left, mem, rem))
|
---|
| 359 | return;
|
---|
| 360 |
|
---|
| 361 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
| 362 | incomplete at the next length (more bit patterns than symbols) */
|
---|
| 363 | least = (left << 1) - syms;
|
---|
| 364 | if (least < 0)
|
---|
| 365 | least = 0;
|
---|
| 366 |
|
---|
| 367 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
| 368 | available for the remaining symbols at the maximum length (if there were
|
---|
| 369 | no limit to the code length, this would become: most = left - 1) */
|
---|
| 370 | most = (((code_t)left << (max - len)) - syms) /
|
---|
| 371 | (((code_t)1 << (max - len)) - 1);
|
---|
| 372 |
|
---|
| 373 | /* occupy least table spaces, creating new sub-tables as needed */
|
---|
| 374 | use = least;
|
---|
| 375 | while (rem < use) {
|
---|
| 376 | use -= rem;
|
---|
| 377 | rem = 1 << (len - root);
|
---|
| 378 | mem += rem;
|
---|
| 379 | }
|
---|
| 380 | rem -= use;
|
---|
| 381 |
|
---|
| 382 | /* examine codes from here, updating table space as we go */
|
---|
| 383 | for (use = least; use <= most; use++) {
|
---|
| 384 | code[len] = use;
|
---|
| 385 | examine(syms - use, len + 1, (left - use) << 1,
|
---|
| 386 | mem + (rem ? 1 << (len - root) : 0), rem << 1);
|
---|
| 387 | if (rem == 0) {
|
---|
| 388 | rem = 1 << (len - root);
|
---|
| 389 | mem += rem;
|
---|
| 390 | }
|
---|
| 391 | rem--;
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | /* remove entries as we drop back down in the recursion */
|
---|
| 395 | code[len] = 0;
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | /* Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
---|
| 399 | intermediate code states (syms, left, len). For each completed code,
|
---|
| 400 | calculate the amount of memory required by inflate to build the decoding
|
---|
| 401 | tables. Find the maximum amount of memory required and show the code that
|
---|
| 402 | requires that maximum. Uses the globals max, root, and num. */
|
---|
| 403 | local void enough(int syms)
|
---|
| 404 | {
|
---|
| 405 | int n; /* number of remaing symbols for this node */
|
---|
| 406 | int left; /* number of unused bit patterns at this length */
|
---|
| 407 | size_t index; /* index of this case in *num */
|
---|
| 408 |
|
---|
| 409 | /* clear code */
|
---|
| 410 | for (n = 0; n <= max; n++)
|
---|
| 411 | code[n] = 0;
|
---|
| 412 |
|
---|
| 413 | /* look at all (root + 1) bit and longer codes */
|
---|
| 414 | large = 1 << root; /* base table */
|
---|
| 415 | if (root < max) /* otherwise, there's only a base table */
|
---|
| 416 | for (n = 3; n <= syms; n++)
|
---|
| 417 | for (left = 2; left < n; left += 2)
|
---|
| 418 | {
|
---|
| 419 | /* look at all reachable (root + 1) bit nodes, and the
|
---|
| 420 | resulting codes (complete at root + 2 or more) */
|
---|
| 421 | index = INDEX(n, left, root + 1);
|
---|
| 422 | if (root + 1 < max && num[index]) /* reachable node */
|
---|
| 423 | examine(n, root + 1, left, 1 << root, 0);
|
---|
| 424 |
|
---|
| 425 | /* also look at root bit codes with completions at root + 1
|
---|
| 426 | bits (not saved in num, since complete), just in case */
|
---|
| 427 | if (num[index - 1] && n <= left << 1)
|
---|
| 428 | examine((n - left) << 1, root + 1, (n - left) << 1,
|
---|
| 429 | 1 << root, 0);
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | /* done */
|
---|
| 433 | printf("done: maximum of %d table entries\n", large);
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | /*
|
---|
| 437 | Examine and show the total number of possible Huffman codes for a given
|
---|
| 438 | maximum number of symbols, initial root table size, and maximum code length
|
---|
| 439 | in bits -- those are the command arguments in that order. The default
|
---|
| 440 | values are 286, 9, and 15 respectively, for the deflate literal/length code.
|
---|
| 441 | The possible codes are counted for each number of coded symbols from two to
|
---|
| 442 | the maximum. The counts for each of those and the total number of codes are
|
---|
| 443 | shown. The maximum number of inflate table entires is then calculated
|
---|
| 444 | across all possible codes. Each new maximum number of table entries and the
|
---|
| 445 | associated sub-code (starting at root + 1 == 10 bits) is shown.
|
---|
| 446 |
|
---|
| 447 | To count and examine Huffman codes that are not length-limited, provide a
|
---|
| 448 | maximum length equal to the number of symbols minus one.
|
---|
| 449 |
|
---|
| 450 | For the deflate literal/length code, use "enough". For the deflate distance
|
---|
| 451 | code, use "enough 30 6".
|
---|
| 452 |
|
---|
| 453 | This uses the %llu printf format to print big_t numbers, which assumes that
|
---|
| 454 | big_t is an unsigned long long. If the big_t type is changed (for example
|
---|
| 455 | to a multiple precision type), the method of printing will also need to be
|
---|
| 456 | updated.
|
---|
| 457 | */
|
---|
| 458 | int main(int argc, char **argv)
|
---|
| 459 | {
|
---|
| 460 | int syms; /* total number of symbols to code */
|
---|
| 461 | int n; /* number of symbols to code for this run */
|
---|
| 462 | big_t got; /* return value of count() */
|
---|
| 463 | big_t sum; /* accumulated number of codes over n */
|
---|
| 464 | code_t word; /* for counting bits in code_t */
|
---|
| 465 |
|
---|
| 466 | /* set up globals for cleanup() */
|
---|
| 467 | code = NULL;
|
---|
| 468 | num = NULL;
|
---|
| 469 | done = NULL;
|
---|
| 470 |
|
---|
| 471 | /* get arguments -- default to the deflate literal/length code */
|
---|
| 472 | syms = 286;
|
---|
| 473 | root = 9;
|
---|
| 474 | max = 15;
|
---|
| 475 | if (argc > 1) {
|
---|
| 476 | syms = atoi(argv[1]);
|
---|
| 477 | if (argc > 2) {
|
---|
| 478 | root = atoi(argv[2]);
|
---|
| 479 | if (argc > 3)
|
---|
| 480 | max = atoi(argv[3]);
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | if (argc > 4 || syms < 2 || root < 1 || max < 1) {
|
---|
| 484 | fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
|
---|
| 485 | stderr);
|
---|
| 486 | return 1;
|
---|
| 487 | }
|
---|
| 488 |
|
---|
| 489 | /* if not restricting the code length, the longest is syms - 1 */
|
---|
| 490 | if (max > syms - 1)
|
---|
| 491 | max = syms - 1;
|
---|
| 492 |
|
---|
| 493 | /* determine the number of bits in a code_t */
|
---|
| 494 | for (n = 0, word = 1; word; n++, word <<= 1)
|
---|
| 495 | ;
|
---|
| 496 |
|
---|
| 497 | /* make sure that the calculation of most will not overflow */
|
---|
| 498 | if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
|
---|
| 499 | fputs("abort: code length too long for internal types\n", stderr);
|
---|
| 500 | return 1;
|
---|
| 501 | }
|
---|
| 502 |
|
---|
| 503 | /* reject impossible code requests */
|
---|
| 504 | if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
|
---|
| 505 | fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
|
---|
| 506 | syms, max);
|
---|
| 507 | return 1;
|
---|
| 508 | }
|
---|
| 509 |
|
---|
| 510 | /* allocate code vector */
|
---|
| 511 | code = calloc(max + 1, sizeof(int));
|
---|
| 512 | if (code == NULL) {
|
---|
| 513 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
| 514 | return 1;
|
---|
| 515 | }
|
---|
| 516 |
|
---|
| 517 | /* determine size of saved results array, checking for overflows,
|
---|
| 518 | allocate and clear the array (set all to zero with calloc()) */
|
---|
| 519 | if (syms == 2) /* iff max == 1 */
|
---|
| 520 | num = NULL; /* won't be saving any results */
|
---|
| 521 | else {
|
---|
| 522 | size = syms >> 1;
|
---|
| 523 | if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
|
---|
| 524 | (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
|
---|
| 525 | (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
|
---|
| 526 | (num = calloc(size, sizeof(big_t))) == NULL) {
|
---|
| 527 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
| 528 | cleanup();
|
---|
| 529 | return 1;
|
---|
| 530 | }
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | /* count possible codes for all numbers of symbols, add up counts */
|
---|
| 534 | sum = 0;
|
---|
| 535 | for (n = 2; n <= syms; n++) {
|
---|
| 536 | got = count(n, 1, 2);
|
---|
| 537 | sum += got;
|
---|
| 538 | if (got == (big_t)0 - 1 || sum < got) { /* overflow */
|
---|
| 539 | fputs("abort: can't count that high!\n", stderr);
|
---|
| 540 | cleanup();
|
---|
| 541 | return 1;
|
---|
| 542 | }
|
---|
| 543 | printf("%llu %d-codes\n", got, n);
|
---|
| 544 | }
|
---|
| 545 | printf("%llu total codes for 2 to %d symbols", sum, syms);
|
---|
| 546 | if (max < syms - 1)
|
---|
| 547 | printf(" (%d-bit length limit)\n", max);
|
---|
| 548 | else
|
---|
| 549 | puts(" (no length limit)");
|
---|
| 550 |
|
---|
| 551 | /* allocate and clear done array for beenhere() */
|
---|
| 552 | if (syms == 2)
|
---|
| 553 | done = NULL;
|
---|
| 554 | else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
|
---|
| 555 | (done = calloc(size, sizeof(struct tab))) == NULL) {
|
---|
| 556 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
| 557 | cleanup();
|
---|
| 558 | return 1;
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | /* find and show maximum inflate table usage */
|
---|
| 562 | if (root > max) /* reduce root to max length */
|
---|
| 563 | root = max;
|
---|
| 564 | if ((code_t)syms < ((code_t)1 << (root + 1)))
|
---|
| 565 | enough(syms);
|
---|
| 566 | else
|
---|
| 567 | puts("cannot handle minimum code lengths > root");
|
---|
| 568 |
|
---|
| 569 | /* done */
|
---|
| 570 | cleanup();
|
---|
| 571 | return 0;
|
---|
| 572 | }
|
---|