[1096] | 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream
|
---|
| 2 | * Copyright (C) 1995-2011 Mark Adler
|
---|
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
| 4 | */
|
---|
| 5 |
|
---|
| 6 | /* @(#) $Id$ */
|
---|
| 7 |
|
---|
| 8 | #include "zutil.h"
|
---|
| 9 |
|
---|
| 10 | #define local static
|
---|
| 11 |
|
---|
| 12 | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
|
---|
| 13 |
|
---|
| 14 | #define BASE 65521 /* largest prime smaller than 65536 */
|
---|
| 15 | #define NMAX 5552
|
---|
| 16 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
---|
| 17 |
|
---|
| 18 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
---|
| 19 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
---|
| 20 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
---|
| 21 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
---|
| 22 | #define DO16(buf) DO8(buf,0); DO8(buf,8);
|
---|
| 23 |
|
---|
| 24 | /* use NO_DIVIDE if your processor does not do division in hardware --
|
---|
| 25 | try it both ways to see which is faster */
|
---|
| 26 | #ifdef NO_DIVIDE
|
---|
| 27 | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
|
---|
| 28 | (thank you to John Reiser for pointing this out) */
|
---|
| 29 | # define CHOP(a) \
|
---|
| 30 | do { \
|
---|
| 31 | unsigned long tmp = a >> 16; \
|
---|
| 32 | a &= 0xffffUL; \
|
---|
| 33 | a += (tmp << 4) - tmp; \
|
---|
| 34 | } while (0)
|
---|
| 35 | # define MOD28(a) \
|
---|
| 36 | do { \
|
---|
| 37 | CHOP(a); \
|
---|
| 38 | if (a >= BASE) a -= BASE; \
|
---|
| 39 | } while (0)
|
---|
| 40 | # define MOD(a) \
|
---|
| 41 | do { \
|
---|
| 42 | CHOP(a); \
|
---|
| 43 | MOD28(a); \
|
---|
| 44 | } while (0)
|
---|
| 45 | # define MOD63(a) \
|
---|
| 46 | do { /* this assumes a is not negative */ \
|
---|
| 47 | z_off64_t tmp = a >> 32; \
|
---|
| 48 | a &= 0xffffffffL; \
|
---|
| 49 | a += (tmp << 8) - (tmp << 5) + tmp; \
|
---|
| 50 | tmp = a >> 16; \
|
---|
| 51 | a &= 0xffffL; \
|
---|
| 52 | a += (tmp << 4) - tmp; \
|
---|
| 53 | tmp = a >> 16; \
|
---|
| 54 | a &= 0xffffL; \
|
---|
| 55 | a += (tmp << 4) - tmp; \
|
---|
| 56 | if (a >= BASE) a -= BASE; \
|
---|
| 57 | } while (0)
|
---|
| 58 | #else
|
---|
| 59 | # define MOD(a) a %= BASE
|
---|
| 60 | # define MOD28(a) a %= BASE
|
---|
| 61 | # define MOD63(a) a %= BASE
|
---|
| 62 | #endif
|
---|
| 63 |
|
---|
| 64 | /* ========================================================================= */
|
---|
| 65 | uLong ZEXPORT adler32(adler, buf, len)
|
---|
| 66 | uLong adler;
|
---|
| 67 | const Bytef *buf;
|
---|
| 68 | uInt len;
|
---|
| 69 | {
|
---|
| 70 | unsigned long sum2;
|
---|
| 71 | unsigned n;
|
---|
| 72 |
|
---|
| 73 | /* split Adler-32 into component sums */
|
---|
| 74 | sum2 = (adler >> 16) & 0xffff;
|
---|
| 75 | adler &= 0xffff;
|
---|
| 76 |
|
---|
| 77 | /* in case user likes doing a byte at a time, keep it fast */
|
---|
| 78 | if (len == 1) {
|
---|
| 79 | adler += buf[0];
|
---|
| 80 | if (adler >= BASE)
|
---|
| 81 | adler -= BASE;
|
---|
| 82 | sum2 += adler;
|
---|
| 83 | if (sum2 >= BASE)
|
---|
| 84 | sum2 -= BASE;
|
---|
| 85 | return adler | (sum2 << 16);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | /* initial Adler-32 value (deferred check for len == 1 speed) */
|
---|
| 89 | if (buf == Z_NULL)
|
---|
| 90 | return 1L;
|
---|
| 91 |
|
---|
| 92 | /* in case short lengths are provided, keep it somewhat fast */
|
---|
| 93 | if (len < 16) {
|
---|
| 94 | while (len--) {
|
---|
| 95 | adler += *buf++;
|
---|
| 96 | sum2 += adler;
|
---|
| 97 | }
|
---|
| 98 | if (adler >= BASE)
|
---|
| 99 | adler -= BASE;
|
---|
| 100 | MOD28(sum2); /* only added so many BASE's */
|
---|
| 101 | return adler | (sum2 << 16);
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | /* do length NMAX blocks -- requires just one modulo operation */
|
---|
| 105 | while (len >= NMAX) {
|
---|
| 106 | len -= NMAX;
|
---|
| 107 | n = NMAX / 16; /* NMAX is divisible by 16 */
|
---|
| 108 | do {
|
---|
| 109 | DO16(buf); /* 16 sums unrolled */
|
---|
| 110 | buf += 16;
|
---|
| 111 | } while (--n);
|
---|
| 112 | MOD(adler);
|
---|
| 113 | MOD(sum2);
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | /* do remaining bytes (less than NMAX, still just one modulo) */
|
---|
| 117 | if (len) { /* avoid modulos if none remaining */
|
---|
| 118 | while (len >= 16) {
|
---|
| 119 | len -= 16;
|
---|
| 120 | DO16(buf);
|
---|
| 121 | buf += 16;
|
---|
| 122 | }
|
---|
| 123 | while (len--) {
|
---|
| 124 | adler += *buf++;
|
---|
| 125 | sum2 += adler;
|
---|
| 126 | }
|
---|
| 127 | MOD(adler);
|
---|
| 128 | MOD(sum2);
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | /* return recombined sums */
|
---|
| 132 | return adler | (sum2 << 16);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | /* ========================================================================= */
|
---|
| 136 | local uLong adler32_combine_(adler1, adler2, len2)
|
---|
| 137 | uLong adler1;
|
---|
| 138 | uLong adler2;
|
---|
| 139 | z_off64_t len2;
|
---|
| 140 | {
|
---|
| 141 | unsigned long sum1;
|
---|
| 142 | unsigned long sum2;
|
---|
| 143 | unsigned rem;
|
---|
| 144 |
|
---|
| 145 | /* for negative len, return invalid adler32 as a clue for debugging */
|
---|
| 146 | if (len2 < 0)
|
---|
| 147 | return 0xffffffffUL;
|
---|
| 148 |
|
---|
| 149 | /* the derivation of this formula is left as an exercise for the reader */
|
---|
| 150 | MOD63(len2); /* assumes len2 >= 0 */
|
---|
| 151 | rem = (unsigned)len2;
|
---|
| 152 | sum1 = adler1 & 0xffff;
|
---|
| 153 | sum2 = rem * sum1;
|
---|
| 154 | MOD(sum2);
|
---|
| 155 | sum1 += (adler2 & 0xffff) + BASE - 1;
|
---|
| 156 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
---|
| 157 | if (sum1 >= BASE) sum1 -= BASE;
|
---|
| 158 | if (sum1 >= BASE) sum1 -= BASE;
|
---|
| 159 | if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
|
---|
| 160 | if (sum2 >= BASE) sum2 -= BASE;
|
---|
| 161 | return sum1 | (sum2 << 16);
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | /* ========================================================================= */
|
---|
| 165 | uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
---|
| 166 | uLong adler1;
|
---|
| 167 | uLong adler2;
|
---|
| 168 | z_off_t len2;
|
---|
| 169 | {
|
---|
| 170 | return adler32_combine_(adler1, adler2, len2);
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
|
---|
| 174 | uLong adler1;
|
---|
| 175 | uLong adler2;
|
---|
| 176 | z_off64_t len2;
|
---|
| 177 | {
|
---|
| 178 | return adler32_combine_(adler1, adler2, len2);
|
---|
| 179 | }
|
---|